mirror of
https://gitlab.com/lander-team/lander-cpp.git
synced 2025-06-16 15:17:23 +00:00
395 lines
12 KiB
C++
395 lines
12 KiB
C++
#include "Vehicle.h"
|
|
#include "outVector.h"
|
|
|
|
void burnStartTimeCalc(struct Vehicle &);
|
|
void thrustSelection(struct Vehicle &, int t);
|
|
void lqrCalc(struct Vehicle &);
|
|
void TVC(struct Vehicle &);
|
|
void vehicleDynamics(struct Vehicle &, struct Vehicle &, int t);
|
|
void state2vec(struct Vehicle &, struct outVector &, int t);
|
|
void write2CSV(struct outVector &, struct Vehicle &);
|
|
double derivative(double x2, double x1, double dt);
|
|
double integral(double x2, double x1, double dt);
|
|
|
|
// Any parameters that are constants should be declared here instead of buried
|
|
// in code
|
|
double const dt = 0.001;
|
|
double const g = -9.81;
|
|
|
|
bool sim(struct Vehicle &State, struct Vehicle &PrevState) {
|
|
|
|
// defining a few random values here cause I'm lazy
|
|
State.burnElapsed = 2000;
|
|
State.mass = State.massInitial;
|
|
PrevState.thrust = 0.0;
|
|
outVector stateVector;
|
|
|
|
// Determine when to burn
|
|
burnStartTimeCalc(State);
|
|
|
|
int t = 0;
|
|
|
|
// Start Sim
|
|
do {
|
|
thrustSelection(State, t);
|
|
lqrCalc(State);
|
|
TVC(State);
|
|
vehicleDynamics(State, PrevState, t);
|
|
state2vec(State, stateVector, t);
|
|
|
|
t++;
|
|
} while ((State.z > 0.0) || (State.thrust > 1.0));
|
|
|
|
write2CSV(stateVector, State);
|
|
|
|
bool returnValue;
|
|
|
|
if (abs(State.vz) < 5) {
|
|
if ((abs(State.yaw) < 5) && (abs(State.pitch) < 5)) {
|
|
returnValue = 1;
|
|
} else {
|
|
returnValue = 0;
|
|
}
|
|
} else {
|
|
returnValue = 0;
|
|
}
|
|
|
|
return returnValue;
|
|
}
|
|
|
|
void burnStartTimeCalc(Vehicle &State) {
|
|
double velocity = State.vz;
|
|
double h = 0;
|
|
|
|
double a, j, mass, thrust;
|
|
|
|
// Piecewise functions for F15 thrust curve
|
|
for (double i = 0.148; i < 3.450; i = i + dt) {
|
|
mass = State.massInitial - i * State.mdot;
|
|
|
|
if ((i > 0.147) && (i < 0.420))
|
|
thrust = 65.165 * i - 2.3921;
|
|
|
|
else if ((i > 0.419) && (i < 3.383))
|
|
thrust = 0.8932 * pow(i, 6) - 11.609 * pow(i, 5) + 60.739 * pow(i, 4) -
|
|
162.99 * pow(i, 3) + 235.6 * pow(i, 2) - 174.43 * i + 67.17;
|
|
|
|
else if ((i > 3.382) && (i < 3.46))
|
|
thrust = -195.78 * i + 675.11;
|
|
|
|
velocity = (((thrust / mass) + g) * dt) + velocity;
|
|
h = velocity * dt + h;
|
|
}
|
|
|
|
State.z = h + (pow(velocity, 2) / (2 * -g)); // starting height
|
|
State.burnVelocity = velocity; // terminal velocity
|
|
|
|
double burnStartTime = State.burnVelocity / -g;
|
|
State.simTime = (State.burntime + burnStartTime) * 1000;
|
|
}
|
|
|
|
void thrustSelection(Vehicle &State, int t) {
|
|
|
|
if (State.burnElapsed != 2000) {
|
|
// determine where in the thrust curve we're at based on elapsed burn time
|
|
// as well as current mass
|
|
State.burnElapsed = (t - State.burnStart) / 1000;
|
|
State.mass = State.massInitial - (State.mdot * State.burnElapsed);
|
|
}
|
|
|
|
else if (abs(State.burnVelocity + State.vz) < .001) {
|
|
// Start burn
|
|
State.burnStart = t;
|
|
State.burnElapsed = 0;
|
|
}
|
|
|
|
else
|
|
State.burnElapsed = 2000; // arbitrary number to ensure we don't burn
|
|
|
|
if ((State.burnElapsed > 0.147) && (State.burnElapsed < 0.420)) {
|
|
State.thrustFiring = true;
|
|
State.thrust = 65.165 * State.burnElapsed - 2.3921;
|
|
} else if ((State.burnElapsed > 0.419) && (State.burnElapsed < 3.383))
|
|
State.thrust = 0.8932 * pow(State.burnElapsed, 6) -
|
|
11.609 * pow(State.burnElapsed, 5) +
|
|
60.739 * pow(State.burnElapsed, 4) -
|
|
162.99 * pow(State.burnElapsed, 3) +
|
|
235.6 * pow(State.burnElapsed, 2) -
|
|
174.43 * State.burnElapsed + 67.17;
|
|
|
|
else if ((State.burnElapsed > 3.382) && (State.burnElapsed < 3.46))
|
|
State.thrust = -195.78 * State.burnElapsed + 675.11;
|
|
|
|
if (State.burnElapsed > 3.45)
|
|
State.thrustFiring = false;
|
|
}
|
|
|
|
void lqrCalc(Vehicle &State) {
|
|
|
|
State.I11 = State.mass * ((1 / 12) * pow(State.vehicleHeight, 2) +
|
|
pow(State.vehicleRadius, 2) / 4);
|
|
State.I22 = State.mass * ((1 / 12) * pow(State.vehicleHeight, 2) +
|
|
pow(State.vehicleRadius, 2) / 4);
|
|
State.I33 = State.mass * 0.5 * pow(State.vehicleRadius, 2);
|
|
|
|
// Paste in Values from gainCalc.m
|
|
double K11 = 39.54316;
|
|
double K12 = 0.00000;
|
|
double K13 = -0.00000;
|
|
double K14 = 39.55769;
|
|
double K15 = 0.00000;
|
|
double K16 = 0.00000;
|
|
double K21 = 0.00000;
|
|
double K22 = 39.54316;
|
|
double K23 = 0.00000;
|
|
double K24 = 0.00000;
|
|
double K25 = 39.55769;
|
|
double K26 = 0.00000;
|
|
double K31 = 0.00000;
|
|
double K32 = 0.00000;
|
|
double K33 = 39.54316;
|
|
double K34 = 0.00000;
|
|
double K35 = 0.00000;
|
|
double K36 = 39.54394;
|
|
|
|
// changing gain exponent drastically changes results of LQR
|
|
double gain = 0.25 * pow(10, -4);
|
|
|
|
// Matrix Multiply K with [YPR/2; w123] column vector and divide by moment
|
|
// arm
|
|
State.LQRx =
|
|
gain *
|
|
((K12 * State.pitch) / 2 + K15 * State.pitchdot + (K13 * State.roll) / 2 +
|
|
K16 * State.rolldot + (K11 * State.yaw) / 2 + K14 * State.yawdot) /
|
|
-State.momentArm;
|
|
State.LQRy =
|
|
gain *
|
|
((K22 * State.pitch) / 2 + K25 * State.pitchdot + (K23 * State.roll) / 2 +
|
|
K26 * State.rolldot + (K21 * State.yaw) / 2 + K24 * State.yawdot) /
|
|
-State.momentArm;
|
|
|
|
// LQR Force limiter X
|
|
if (State.LQRx > State.thrust)
|
|
State.LQRx = State.thrust;
|
|
else if (State.LQRx < -1 * State.thrust)
|
|
State.LQRx = -1 * State.thrust;
|
|
|
|
// LQR Force limiter Y
|
|
if (State.LQRy > State.thrust)
|
|
State.LQRy = State.thrust;
|
|
else if (State.LQRy < -1 * State.thrust)
|
|
State.LQRy = -1 * State.thrust;
|
|
}
|
|
|
|
void TVC(Vehicle &State) {
|
|
if (State.thrust < 1) {
|
|
// Define forces and moments for t = 0
|
|
State.Fx = 0;
|
|
State.Fy = 0;
|
|
State.Fz = g * State.massInitial;
|
|
|
|
State.momentX = 0;
|
|
State.momentY = 0;
|
|
State.momentZ = 0;
|
|
} else {
|
|
// Convert servo position to degrees for comparison to max allowable
|
|
State.xServoDegs = (180 / M_PI) * asin(State.LQRx / State.thrust);
|
|
|
|
// Servo position limiter
|
|
if (State.xServoDegs > State.maxServo)
|
|
State.xServoDegs = State.maxServo;
|
|
else if (State.xServoDegs < -1 * State.maxServo)
|
|
State.xServoDegs = -1 * State.maxServo;
|
|
|
|
// Convert servo position to degrees for comparison to max allowable
|
|
State.yServoDegs = (180 / M_PI) * asin(State.LQRy / State.thrust);
|
|
|
|
// Servo position limiter
|
|
if (State.yServoDegs > State.maxServo)
|
|
State.yServoDegs = State.maxServo;
|
|
else if (State.yServoDegs < -1 * State.maxServo)
|
|
State.yServoDegs = -1 * State.maxServo;
|
|
|
|
// Vector math to aqcuire thrust vector components
|
|
State.Fx = State.thrust * sin(State.xServoDegs * (M_PI / 180));
|
|
State.Fy = State.thrust * sin(State.yServoDegs * (M_PI / 180));
|
|
State.Fz =
|
|
sqrt(pow(State.thrust, 2) - (pow(State.Fx, 2) + pow(State.Fy, 2))) +
|
|
(State.mass * g);
|
|
|
|
// Calculate moment created by Fx and Fy
|
|
State.momentX = State.Fx * State.momentArm;
|
|
State.momentY = State.Fy * State.momentArm;
|
|
State.momentZ = 0;
|
|
}
|
|
}
|
|
|
|
void vehicleDynamics(Vehicle &State, Vehicle &PrevState, int t) {
|
|
// Idot
|
|
if (t < 1) {
|
|
State.I11dot = 0;
|
|
State.I22dot = 0;
|
|
State.I33dot = 0;
|
|
} else {
|
|
State.I11dot = derivative(State.I11, PrevState.I11, State.stepSize);
|
|
State.I22dot = derivative(State.I22, PrevState.I22, State.stepSize);
|
|
State.I33dot = derivative(State.I33, PrevState.I33, State.stepSize);
|
|
}
|
|
|
|
// pdot, qdot, rdot
|
|
State.yawddot = (State.momentX - State.I11dot * State.yawdot +
|
|
State.I22 * State.pitchdot * State.rolldot -
|
|
State.I33 * State.pitchdot * State.rolldot) /
|
|
State.I11;
|
|
State.pitchddot = (State.momentY - State.I22dot * State.pitchdot -
|
|
State.I11 * State.rolldot * State.yawdot +
|
|
State.I33 * State.rolldot * State.yawdot) /
|
|
State.I22;
|
|
State.rollddot = (State.momentZ - State.I33dot * State.rolldot +
|
|
State.I11 * State.pitchdot * State.yawdot -
|
|
State.I22 * State.pitchdot * State.yawdot) /
|
|
State.I33;
|
|
|
|
if (t < 1) {
|
|
State.x = 0;
|
|
State.y = 0;
|
|
|
|
State.ax = 0;
|
|
State.ay = 0;
|
|
State.az = State.Fz / State.massInitial;
|
|
}
|
|
|
|
else {
|
|
// p, q, r
|
|
State.yawdot = integral(State.yawddot, PrevState.yawdot, State.stepSize);
|
|
State.pitchdot =
|
|
integral(State.pitchddot, PrevState.pitchdot, State.stepSize);
|
|
State.rolldot = integral(State.rollddot, PrevState.rolldot, State.stepSize);
|
|
|
|
// ax ay az
|
|
State.ax = (State.Fx / State.mass) +
|
|
(State.pitchdot * State.vz - State.rolldot * State.vy);
|
|
State.ay = (State.Fy / State.mass) +
|
|
(State.rolldot * State.vx - State.vz * State.yawdot);
|
|
State.az = (State.Fz / State.mass) +
|
|
(State.vy * State.yawdot - State.pitchdot * State.vx);
|
|
|
|
// vx vy vz in Body frame
|
|
State.vx = integral(State.ax, PrevState.vx, State.stepSize);
|
|
State.vy = integral(State.ay, PrevState.vy, State.stepSize);
|
|
State.vz = integral(State.az, PrevState.vz, State.stepSize);
|
|
|
|
// Xe
|
|
State.x = integral(State.vx, PrevState.x, State.stepSize);
|
|
State.y = integral(State.vy, PrevState.y, State.stepSize);
|
|
State.z = integral(State.vz, PrevState.z, State.stepSize);
|
|
|
|
// Euler Angles
|
|
State.phidot = State.yawdot + (State.pitchdot * sin(State.yaw) +
|
|
State.rolldot * cos(State.yaw)) *
|
|
(sin(State.pitch) / cos(State.pitch));
|
|
State.thetadot =
|
|
State.pitchdot * cos(State.yaw) - State.rolldot * sin(State.pitch);
|
|
State.psidot =
|
|
(State.pitchdot * sin(State.yaw) + State.rolldot * cos(State.yaw)) /
|
|
cos(State.pitch);
|
|
|
|
State.yaw = integral(State.phidot, PrevState.yaw, State.stepSize);
|
|
State.pitch = integral(State.thetadot, PrevState.pitch, State.stepSize);
|
|
State.roll = integral(State.psidot, PrevState.roll, State.stepSize);
|
|
}
|
|
|
|
// Set "prev" values for next timestep
|
|
PrevState = State;
|
|
}
|
|
|
|
void state2vec(Vehicle &State, outVector &stateVector, int t) {
|
|
stateVector.x[t] = State.x;
|
|
stateVector.y[t] = State.y;
|
|
stateVector.z[t] = State.z;
|
|
|
|
stateVector.vx[t] = State.vx;
|
|
stateVector.vy[t] = State.vy;
|
|
stateVector.vz[t] = State.vz;
|
|
|
|
stateVector.ax[t] = State.ax;
|
|
stateVector.ay[t] = State.ay;
|
|
stateVector.az[t] = State.az;
|
|
|
|
stateVector.yaw[t] = State.yaw;
|
|
stateVector.pitch[t] = State.pitch;
|
|
stateVector.roll[t] = State.roll;
|
|
|
|
stateVector.yawdot[t] = State.yawdot;
|
|
stateVector.pitchdot[t] = State.pitchdot;
|
|
stateVector.rolldot[t] = State.rolldot;
|
|
|
|
stateVector.servo1[t] = State.xServoDegs;
|
|
stateVector.servo2[t] = State.yServoDegs;
|
|
|
|
stateVector.thrustFiring[t] = State.thrustFiring;
|
|
}
|
|
|
|
void write2CSV(outVector &stateVector, Vehicle &State) {
|
|
|
|
// Deleting any previous output file
|
|
if (remove("simOut.csv") != 0)
|
|
perror("No file deletion necessary");
|
|
else
|
|
puts("Previous output file successfully deleted");
|
|
|
|
// Define and open output file "simOut.csv"
|
|
std::fstream outfile;
|
|
outfile.open("simOut.csv", std::ios::app);
|
|
|
|
// Output file header. These are the variables that we output - useful for
|
|
// debugging
|
|
outfile << "t, x, y, z, vx, vy, vz, ax, ay, az, yaw, pitch, roll, yawdot, "
|
|
"pitchdot, rolldot, Servo1, Servo2, thrustFiring"
|
|
<< std::endl;
|
|
|
|
std::cout << "Writing to csv...\n";
|
|
|
|
// writing to output file
|
|
for (int t = 0; t < State.simTime; t++) {
|
|
outfile << t << ", ";
|
|
|
|
outfile << stateVector.x[t] << ", ";
|
|
outfile << stateVector.y[t] << ", ";
|
|
outfile << stateVector.z[t] << ", ";
|
|
|
|
outfile << stateVector.vx[t] << ", ";
|
|
outfile << stateVector.vy[t] << ", ";
|
|
outfile << stateVector.vz[t] << ", ";
|
|
|
|
outfile << stateVector.ax[t] << ", ";
|
|
outfile << stateVector.ay[t] << ", ";
|
|
outfile << stateVector.az[t] << ", ";
|
|
|
|
outfile << stateVector.yaw[t] * 180 / M_PI << ", ";
|
|
outfile << stateVector.pitch[t] * 180 / M_PI << ", ";
|
|
outfile << stateVector.roll[t] * 180 / M_PI << ", ";
|
|
|
|
outfile << stateVector.yawdot[t] * 180 / M_PI << ", ";
|
|
outfile << stateVector.pitchdot[t] * 180 / M_PI << ", ";
|
|
outfile << stateVector.rolldot[t] * 180 / M_PI << ", ";
|
|
|
|
outfile << stateVector.servo1[t] << ", ";
|
|
outfile << stateVector.servo2[t] << ", ";
|
|
|
|
outfile << stateVector.thrustFiring[t] << std::endl;
|
|
}
|
|
|
|
outfile.close();
|
|
}
|
|
|
|
double derivative(double x2, double x1, double dt) {
|
|
double dxdt = (x2 - x1) / (dt / 1000);
|
|
return dxdt;
|
|
}
|
|
|
|
double integral(double x, double y, double dt) {
|
|
double integ = (x * dt / 1000) + y;
|
|
return integ;
|
|
}
|