%% LANDER SIM PROTOTYPE close all; clear all; clc; %% User Defined Values % Initial Conditions v0 = 0; % Initial Velocity (z) [m/s] M0 = 1.2; % Initial Mass [kg] yaw0 = 0; % Initial Yaw [deg] pitch0 = 5; % Initial Pitch [deg] roll0 = 0; % Initial Roll [deg] p0 = 0; % Initial Angular Velocity (x) [deg/s] q0 = 0; % Initial Angular Velocity (y) [deg/s] r0 = 0; % Initial Angular Velocity (z) [deg/s] Tcurve = readmatrix('F15_thrustCurve.txt'); % Thrust Curve from .txt [t, N] % Constants g = -9.81; % Gravitational Acceleration [m/s2] Mp = 0.06; % Propellant Mass [kg] Mb = M0 - Mp; % Burnout Mass [kg] tb = Tcurve(end, 1) - Tcurve(1, 1); % Burn Time [s] mdot = Mp / tb; % Mass Flow Rate [kg/s] D = 0; % Drag [N] stepSize = 0.001; % Simulation Step Size [s] maxServo = 15; % Max Servo Rotation [deg] % Moment of Inertia / Mass I11 = (1/12) * 0.5318^2 + 0.25 * 0.05105^2; % (1/12) * h^2 + 0.25 * r^2 I22 = (1/12) * 0.5318^2 + 0.25 * 0.05105^2; % (1/12) * h^2 + 0.25 * r^2 I33 = 0.5 * 0.05105^2; % 0.5 * r^2 I = [I11 0 0; 0 I22 0; 0 0 I33]; % I divided by Mass... this is taken care of in Simulink since our mass isn't constant %% Pre-Sim Calcs K = calcLQR(I*M0); % LQR Gain Calcs [h0, vb, burnStartTime] = burnStartTimeCalc(Tcurve, tb, M0, mdot, Mb, v0); % Burn Start Time Calc simTime = burnStartTime + tb; % Simulation Time [s] yaw0 = yaw0 * pi / 180; % Initial Yaw [rad] pitch0 = pitch0 * pi / 180; % Initial Pitch [rad] roll0 = roll0 * pi / 180; % Initial Roll [rad] p0 = p0 * pi / 180; % Initial Angular Velocity (x) [rad/s] q0 = q0 * pi / 180; % Initial Angular Velocity (y) [rad/s] r0 = r0 * pi / 180; % Initial Angular Velocity (z) [rad/s] %% Simulink tic model = 'simProtoype'; load_system(model); simOut = sim(model); toc %% Outputs figure(1) % Acceleration subplot(3, 1, 1) plot(simOut.a.Data(:, 3)) title('Acceleration vs Time') xlabel('Time (s)') ylabel('Acceleration (g''s)') % Velocity subplot(3, 1, 2) plot(simOut.v.Data(:, 3)) title('Velocity vs Time') xlabel('Time (s)') ylabel('Velocity (m/s)') % Altitude subplot(3, 1, 3) plot(simOut.h.Time, simOut.h.Data(:,3)) title('Altitude vs Time') xlabel('Time (s)') ylabel('Altitude (m)') ylim([0 h0+5]) saveas(gcf,'outputs/Accel-Vel-Alt vs Time.png') figure(2) % Euler Angles subplot(2, 1, 1) plot(simOut.YPR.Data) title('Euler Angles vs Time') xlabel('Time (ms)') ylabel('Euler Angles (deg)') legend('Yaw', 'Pitch', 'Roll') % Angular Velocity subplot(2, 1, 2) plot(simOut.YPRdot.Data) title('Angular Velocity vs Time') xlabel('Time (ms)') ylabel('Angular Velocity (deg/s)') legend('X', 'Y', 'Z') saveas(gcf,'outputs/Euler Angles vs Time.png') figure(3) % Servo 1 Position subplot(2, 1, 1) plot(simOut.servo1.Data) title('Servo 1 Position vs Time') xlabel('Time (ms)') ylabel('Servo 1 Position (rad)') % Servo 2 Position subplot(2, 1, 2) plot(simOut.servo2.Data) title('Servo 2 Position vs Time') xlabel('Time (ms)') ylabel('Servo 2 Position (rad)') saveas(gcf,'outputs/Servo Position vs Time.png') % Animation h = figure(4); K = animatedline('Marker', 'o'); axis([-10, 10, 0, h0]) xlabel('X-Position (m)') ylabel('Altitude (m)') title('Altitude') grid on for i = 1 : length(simOut.h.Data) clearpoints(K); addpoints(K, simOut.h.Data(i, 1), simOut.h.Data(i, 3)); title(sprintf('Altitude at T = %f', simOut.h.Time(i))) drawnow limitrate % Write Animation to gif, set to zero when testing since its slow to render. outframes = 50; % 50 is a nice default if outframes % Write to the GIF File if i == 1 % Capture the plot as an image frame = getframe(h); im = frame2im(frame); [imind,cm] = rgb2ind(im,256); %initalize plot imwrite(imind,cm,'outputs/Altitude.gif','gif', 'Loopcount',inf); elseif mod(i,floor(length(simOut.h.Data)/outframes)) == 0 % Capture the plot as an image frame = getframe(h); im = frame2im(frame); [imind,cm] = rgb2ind(im,256); % Append to plot imwrite(imind,cm,'outputs/Altitude.gif','gif','WriteMode','append', 'DelayTime', .2); end end end