1
0
mirror of https://gitlab.com/Anson-Projects/projects.git synced 2025-08-02 19:41:38 +00:00

init commit

This commit is contained in:
2021-04-01 22:53:44 -07:00
commit 56572e8a90
81 changed files with 21208 additions and 0 deletions

View File

@@ -0,0 +1,118 @@
---
title: "Air Propulsion Simulation"
description: |
Simulating the performace of an air propulsion system as an alternative to solid rocket motors.
author:
- name: Anson Biggs
url: https://ansonbiggs.com
repository_url: https://gitlab.com/lander-team/air-prop-simulation
date: 04-01-2021
fig_width: 6
fig_align: "center"
output:
distill::distill_article:
self_contained: false
categories:
- Julia
- Capstone
---
Boilerplate intro about why all of this was done
```{r setup, include=FALSE}
library(ggplot2)
knitr::opts_chunk$set(echo = TRUE, results = 'hide')
library(JuliaCall)
julia_setup(JULIA_HOME = "/opt/julia-1.6.0/bin/")
```
```{julia, code_folding=TRUE}
using Plots
plotly()
theme(:ggplot2); # In true R spirit
using Unitful
using DataFrames
using Measurements
using Measurements: value, uncertainty
```
This code is just the setup the setup, using values scraped from various parts of the world wide web.
```{julia}
# Tank https://www.amazon.com/Empire-Paintball-BASICS-Pressure-Compressed/dp/B07B6M48SR/
V = (85 ± 5)u"inch^3"
P0 = (4200.0 ± 300)u"psi"
Wtank = (2.3 ± 0.2)u"lb"
Pmax = (250 ± 50)u"psi" # Max Pressure that can come out the nozzle
Wsolenoid = 1.5u"kg"
# Params
d_nozzle = ((1 // 18) ± 0.001)u"inch"
a_nozzle = (pi / 4) * d_nozzle^2
# Universal Stuff
P_amb = (1 ± 0.2)u"atm"
γ = 1.4 ± 0.05
R = 287.05u"J/(kg * K)"
T = (300 ± 20)u"K"
```
This is the actual simulation. Maybe throw some references in and explain some equations.
The rocket equation is pretty sick:
$$T = \dot{m} \cdot v_\text{Exit} + A_\text{Nozzle} \cdot (P - P_\text{Ambient}) $$
And thats about all you need to get to the moon.
```{julia}
let
t = 0.0u"s"
P = P0 |> u"Pa"
M = V * (P / (R * T)) |> u"kg"
ts = 1u"ms"
global df = DataFrame(Thrust=(0 ± 0)u"N", Pressure=P0, Time=0.0u"s", Mass=M)
while M > 0.005u"kg"
# while t < 30u"s"
# Calculate what is leaving tank
P = minimum([P, Pmax])
ve = sqrt((2 * γ / (γ - 1)) * R * T * (1 - P_amb / P)^((γ - 1) / γ)) |> u"m/s"
ρ = P / (R * T) |> u"kg/m^3"
ṁ = ρ * a_nozzle * ve |> u"kg/s"
Thrust = ṁ * ve + a_nozzle * (P - P_amb) |> u"N"
# Calculate what is still in the tank
M = M - ṁ * ts |> u"kg"
P = (M * R * T) / V |> u"Pa"
t = t + ts
df_step = DataFrame(Thrust=Thrust, Pressure=P, Time=t, Mass=M)
append!(df, df_step)
end
end
```
Heres the results plotted. Notice the massive error once the tank starts running low.
```{julia, echo=FALSE, results='show'}
thrust_values = df.Thrust .|> ustrip .|> value;
thrust_uncertainties = df.Thrust .|> ustrip .|> uncertainty;
out = DataFrame(Thrust=thrust_values, Uncertainty=thrust_uncertainties, Time=df.Time .|> u"s" .|> ustrip);
plot(df.Time .|> ustrip, thrust_values,
title="Thrust Over Time",
ribbon=(thrust_uncertainties, thrust_uncertainties),
fillalpha=.2,label="Thrust",
xlabel="Time (s)",
ylabel="Thrust (N)",
)
```
Big conclusion about things.