1
0
mirror of https://gitlab.com/Anson-Projects/projects.git synced 2025-06-16 06:56:46 +00:00
Projects/docs/posts/posts.json
2021-04-03 16:55:37 -07:00

40 lines
7.1 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[
{
"path": "posts/2021-04-01-air-propulsion-simulation/",
"title": "Air Propulsion Simulation",
"description": "Simulating the performance of an air propulsion system as an alternative to solid rocket motors.",
"author": [
{
"name": "Anson Biggs",
"url": "https://ansonbiggs.com"
}
],
"date": "2021-04-01",
"categories": [
"Julia",
"Capstone"
],
"contents": "\r\nFor my team was tasked with designing a system capable of moving mining equipment and materials around the surface of the Moon using a propolsive landing. The system had to be tested on earth with something that was feasible for our team to build in 2 semesters. One of the first considerations my capstone advisor wanted was to test the feasibility of an air propulsion system instead of the obvious solution that of using solid rocket motors. This document is really just napkin math to determine if the system is even feasibly and is not meant to be a rigorous study of an air propulsion system which would easily keep a capstone team busy by itself.\r\n\r\n\r\nShow code\r\nusing Plots\r\nplotly()\r\ntheme(:ggplot2); # In true R spirit\r\n\r\nusing Unitful\r\nusing DataFrames\r\nusing Measurements\r\nusing Measurements: value, uncertainty\r\nusing CSV\r\n\r\nAn off the shelf paintball gun tank was used for the pressure vessel. This was chosen because they are very high pressure for their weight, and are designed to be bumped around.\r\n\r\n# Tank https://www.amazon.com/Empire-Paintball-BASICS-Pressure-Compressed/dp/B07B6M48SR/\r\nV = (85 ± 5)u\"inch^3\"\r\nP0 = (4200.0 ± 300)u\"psi\"\r\nWtank = (2.3 ± 0.2)u\"lb\"\r\nPmax = (250 ± 50)u\"psi\" # Max Pressure that can come out the nozzle\r\n\r\nThe nozzle diameter was changed until the air prop system had a burn time similar to a G18ST rocket motor.\r\n\r\n# Params\r\nd_nozzle = ((1 // 18) ± 0.001)u\"inch\"\r\na_nozzle = (pi / 4) * d_nozzle^2\r\n\r\nThese are just universal values for what a normal day would look like in Arizona. (Çengel and Boles 2015)\r\n\r\n# Universal Stuff\r\nP_amb = (1 ± 0.2)u\"atm\"\r\nγ = 1.4 ± 0.05\r\nR = 287.05u\"J/(kg * K)\"\r\nT = (300 ± 20)u\"K\"\r\n\r\nThis is the actual simulation. Maybe throw some references in and explain some equations.\r\nThe following equations also came from (Çengel and Boles 2015)\r\nThe rocket equation is pretty sick(Sutton and Biblarz 2001, eq: 2-14):\r\n\\[T = \\dot{m} \\cdot v_\\text{Exit} + A_\\text{Nozzle} \\cdot (P - P_\\text{Ambient}) \\] And thats about all you need to get to the Moon(Curtis 2020).\r\n\r\ndf = let\r\nt = 0.0u\"s\"\r\nP = P0 |> u\"Pa\"\r\nM = V * (P / (R * T)) |> u\"kg\"\r\nts = 1u\"ms\"\r\ndf = DataFrame(Thrust=(0 ± 0)u\"N\", Pressure=P0, Time=0.0u\"s\", Mass=M)\r\n while M > 0.005u\"kg\"\r\n # while t < 30u\"s\"\r\n # Calculate what is leaving tank\r\n P = minimum([P, Pmax])\r\n ve = sqrt((2 * γ / (γ - 1)) * R * T * (1 - P_amb / P)^((γ - 1) / γ)) |> u\"m/s\"\r\n ρ = P / (R * T) |> u\"kg/m^3\"\r\n ṁ = ρ * a_nozzle * ve |> u\"kg/s\"\r\n \r\n Thrust = ṁ * ve + a_nozzle * (P - P_amb) |> u\"N\"\r\n \r\n # Calculate what is still in the tank\r\n M = M - ṁ * ts |> u\"kg\"\r\n P = (M * R * T) / V |> u\"Pa\"\r\n t = t + ts\r\n \r\n df_step = DataFrame(Thrust=Thrust, Pressure=P, Time=t, Mass=M)\r\n append!(df, df_step)\r\n end\r\n df\r\nend\r\n\r\nbreakdown of the data\r\n\r\n\"\r\n\r\n\r\n\r\nvariable\r\n\r\n\r\nmean\r\n\r\n\r\nmin\r\n\r\n\r\nmedian\r\n\r\n\r\nmax\r\n\r\n\r\nnmissing\r\n\r\n\r\neltype\r\n\r\n\r\n\r\n\r\nSymbol\r\n\r\n\r\nQuantity\r\n\r\n\r\nQuantity\r\n\r\n\r\nQuantity\r\n\r\n\r\nQuantity\r\n\r\n\r\nInt64\r\n\r\n\r\nDataType\r\n\r\n\r\n4 rows × 7 columns\r\n\r\n\r\n1\r\n\r\n\r\nThrust\r\n\r\n\r\n20.0±2.0 N\r\n\r\n\r\n0.0±0.0 N\r\n\r\n\r\n21.1±4.7 N\r\n\r\n\r\n21.1±4.7 N\r\n\r\n\r\n0\r\n\r\n\r\nQuantity{Measurement{Float64}, 𝐋 𝐌 𝐓^-2, FreeUnits{(N,), 𝐋 𝐌 𝐓^-2, nothing}}\r\n\r\n\r\n2\r\n\r\n\r\nPressure\r\n\r\n\r\n2020.0±520.0 psi\r\n\r\n\r\n40.0±160.0 psi\r\n\r\n\r\n2010.0±570.0 psi\r\n\r\n\r\n4200.0±300.0 psi\r\n\r\n\r\n0\r\n\r\n\r\nQuantity{Measurement{Float64}, 𝐌 𝐋^-1 𝐓^-2, FreeUnits{(psi,), 𝐌 𝐋^-1 𝐓^-2, nothing}}\r\n\r\n\r\n3\r\n\r\n\r\nTime\r\n\r\n\r\n10.1515 s\r\n\r\n\r\n0.0 s\r\n\r\n\r\n10.1515 s\r\n\r\n\r\n20.303 s\r\n\r\n\r\n0\r\n\r\n\r\nQuantity{Float64, 𝐓, FreeUnits{(s,), 𝐓, nothing}}\r\n\r\n\r\n4\r\n\r\n\r\nMass\r\n\r\n\r\n0.225±0.066 kg\r\n\r\n\r\n0.005±0.018 kg\r\n\r\n\r\n0.224±0.071 kg\r\n\r\n\r\n0.468±0.053 kg\r\n\r\n\r\n0\r\n\r\n\r\nQuantity{Measurement{Float64}, 𝐌, FreeUnits{(kg,), 𝐌, nothing}}\r\n\r\n\"\r\n\r\nHeres the results plotted. Notice the massive error once the tank starts running low.\r\n\r\n\r\nShow code\r\n\r\nthrust_values = df.Thrust .|> ustrip .|> value;\r\nthrust_uncertainties = df.Thrust .|> ustrip .|> uncertainty;\r\n\r\nair = DataFrame(Thrust=thrust_values, Uncertainty=thrust_uncertainties, Time=df.Time .|> u\"s\" .|> ustrip);\r\n\r\n\r\nplot(df.Time .|> ustrip, thrust_values, \r\n title=\"Thrust Over Time\", \r\n ribbon=(thrust_uncertainties, thrust_uncertainties), \r\n fillalpha=.2,label=\"Thrust\",\r\n xlabel=\"Time (s)\", \r\n ylabel=\"Thrust (N)\",\r\n size = (1200, 800),\r\n )\r\n\r\n\r\nFigure 1: Air Proplsion Simulation\r\n\r\n\r\n\r\nHere the air prop is plotted along with rocket motors that are being\r\n\r\n\r\nShow code\r\n\r\nf10 = CSV.read(\"AeroTech_F10.csv\", DataFrame);\r\nf15 = CSV.read(\"Estes_F15.csv\", DataFrame);\r\ng8 = CSV.read(\"AeroTech_G8ST.csv\", DataFrame);\r\n\r\n\r\nplot(air.Time, air.Thrust, label=\"Air Propulsion\", fillalpha=.1, legend=:topleft, size = (1200, 800));\r\n\r\nfor (d, l) in [(f10, \"F10\"), (f15, \"F15\"), (g8, \"G8ST\")]\r\n plot!(d[!,\"Time (s)\"], d[!, \"Thrust (N)\"], label=l);\r\nend\r\n\r\ntitle!(\"Propulsion Comparison\");\r\nxlabel!(\"Time (s)\");\r\nylabel!(\"Thrust (N)\")\r\n\r\n\r\nFigure 2: Rocket Motor Data: (Coker, n.d.)\r\n\r\n\r\n\r\nBig conclusion about things.\r\n\r\n\r\n\r\nCoker, John. n.d. “Rocket Motor Data.” https://www.thrustcurve.org/.\r\n\r\n\r\nCurtis, Howard D. 2020. Orbital Mechanics for Engineering Students. Fourth edition. Butterworth-Heinemann Publications.\r\n\r\n\r\nÇengel, Yunus A., and Michael A. Boles. 2015. Thermodynamics: An Engineering Approach. Eighth edition. New York: McGraw-Hill Education.\r\n\r\n\r\nSutton, George P., and Oscar Biblarz. 2001. Rocket Propulsion Elements. 7th ed. New York: John Wiley & Sons.\r\n\r\n\r\n\r\n\r\n",
"preview": {},
"last_modified": "2021-04-03T16:52:20-07:00",
"input_file": "air-propulsion-simulation.utf8.md"
},
{
"path": "posts/welcome/",
"title": "Welcome to Anson's Projects",
"description": "Welcome to our new blog, Anson's Projects. We hope you enjoy \nreading what we have to say!",
"author": [
{
"name": "Nora Jones",
"url": "https://example.com/norajones"
}
],
"date": "2021-04-01",
"categories": [],
"contents": "\n\n\n\n",
"preview": {},
"last_modified": "2021-04-01T20:38:44-07:00",
"input_file": {}
}
]