mirror of
https://gitlab.com/Anson-Projects/projects.git
synced 2025-06-15 22:46:48 +00:00
1597 lines
53 KiB
HTML
1597 lines
53 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
|
||
|
||
<head>
|
||
<meta charset="utf-8"/>
|
||
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
||
<meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1"/>
|
||
<meta name="generator" content="distill" />
|
||
|
||
<style type="text/css">
|
||
/* Hide doc at startup (prevent jankiness while JS renders/transforms) */
|
||
body {
|
||
visibility: hidden;
|
||
}
|
||
</style>
|
||
|
||
<!--radix_placeholder_import_source-->
|
||
<!--/radix_placeholder_import_source-->
|
||
|
||
<style type="text/css">code{white-space: pre;}</style>
|
||
<style type="text/css" data-origin="pandoc">
|
||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||
.sourceCode { overflow: visible; }
|
||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||
div.sourceCode { margin: 1em 0; }
|
||
pre.sourceCode { margin: 0; }
|
||
@media screen {
|
||
div.sourceCode { overflow: auto; }
|
||
}
|
||
@media print {
|
||
pre > code.sourceCode { white-space: pre-wrap; }
|
||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||
}
|
||
pre.numberSource code
|
||
{ counter-reset: source-line 0; }
|
||
pre.numberSource code > span
|
||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||
pre.numberSource code > span > a:first-child::before
|
||
{ content: counter(source-line);
|
||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||
border: none; display: inline-block;
|
||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||
-khtml-user-select: none; -moz-user-select: none;
|
||
-ms-user-select: none; user-select: none;
|
||
padding: 0 4px; width: 4em;
|
||
color: #aaaaaa;
|
||
}
|
||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||
div.sourceCode
|
||
{ }
|
||
@media screen {
|
||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||
}
|
||
code span.al { color: #ad0000; } /* Alert */
|
||
code span.an { color: #5e5e5e; } /* Annotation */
|
||
code span.at { } /* Attribute */
|
||
code span.bn { color: #ad0000; } /* BaseN */
|
||
code span.bu { } /* BuiltIn */
|
||
code span.cf { color: #007ba5; } /* ControlFlow */
|
||
code span.ch { color: #20794d; } /* Char */
|
||
code span.cn { color: #8f5902; } /* Constant */
|
||
code span.co { color: #5e5e5e; } /* Comment */
|
||
code span.cv { color: #5e5e5e; font-style: italic; } /* CommentVar */
|
||
code span.do { color: #5e5e5e; font-style: italic; } /* Documentation */
|
||
code span.dt { color: #ad0000; } /* DataType */
|
||
code span.dv { color: #ad0000; } /* DecVal */
|
||
code span.er { color: #ad0000; } /* Error */
|
||
code span.ex { } /* Extension */
|
||
code span.fl { color: #ad0000; } /* Float */
|
||
code span.fu { color: #4758ab; } /* Function */
|
||
code span.im { } /* Import */
|
||
code span.in { color: #5e5e5e; } /* Information */
|
||
code span.kw { color: #007ba5; } /* Keyword */
|
||
code span.op { color: #5e5e5e; } /* Operator */
|
||
code span.ot { color: #007ba5; } /* Other */
|
||
code span.pp { color: #ad0000; } /* Preprocessor */
|
||
code span.sc { color: #5e5e5e; } /* SpecialChar */
|
||
code span.ss { color: #20794d; } /* SpecialString */
|
||
code span.st { color: #20794d; } /* String */
|
||
code span.va { color: #111111; } /* Variable */
|
||
code span.vs { color: #20794d; } /* VerbatimString */
|
||
code span.wa { color: #5e5e5e; font-style: italic; } /* Warning */
|
||
</style>
|
||
|
||
<style>
|
||
div.csl-bib-body { }
|
||
div.csl-entry {
|
||
clear: both;
|
||
}
|
||
.hanging div.csl-entry {
|
||
margin-left:2em;
|
||
text-indent:-2em;
|
||
}
|
||
div.csl-left-margin {
|
||
min-width:2em;
|
||
float:left;
|
||
}
|
||
div.csl-right-inline {
|
||
margin-left:2em;
|
||
padding-left:1em;
|
||
}
|
||
div.csl-indent {
|
||
margin-left: 2em;
|
||
}
|
||
</style>
|
||
|
||
<!--radix_placeholder_meta_tags-->
|
||
<title>Machine Learning Directed Study Report 2</title>
|
||
|
||
<meta property="description" itemprop="description" content="Advanced processing of 3D meshes using Julia, and data science in Matlab."/>
|
||
|
||
|
||
<!-- https://schema.org/Article -->
|
||
<meta property="article:published" itemprop="datePublished" content="2022-04-03"/>
|
||
<meta property="article:created" itemprop="dateCreated" content="2022-04-03"/>
|
||
<meta name="article:author" content="Anson Biggs"/>
|
||
|
||
<!-- https://developers.facebook.com/docs/sharing/webmasters#markup -->
|
||
<meta property="og:title" content="Machine Learning Directed Study Report 2"/>
|
||
<meta property="og:type" content="article"/>
|
||
<meta property="og:description" content="Advanced processing of 3D meshes using Julia, and data science in Matlab."/>
|
||
<meta property="og:locale" content="en_US"/>
|
||
|
||
<!-- https://dev.twitter.com/cards/types/summary -->
|
||
<meta property="twitter:card" content="summary"/>
|
||
<meta property="twitter:title" content="Machine Learning Directed Study Report 2"/>
|
||
<meta property="twitter:description" content="Advanced processing of 3D meshes using Julia, and data science in Matlab."/>
|
||
|
||
<!--/radix_placeholder_meta_tags-->
|
||
|
||
<meta name="citation_reference" content="citation_title=Polyhedral Mass Properties (Revisited);citation_publication_date=2002;citation_author=David Eberly"/>
|
||
<!--radix_placeholder_rmarkdown_metadata-->
|
||
|
||
<script type="text/json" id="radix-rmarkdown-metadata">
|
||
{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["title","description","author","repository_url","date","output","categories","preview","bibliography","draft"]}},"value":[{"type":"character","attributes":{},"value":["Machine Learning Directed Study Report 2"]},{"type":"character","attributes":{},"value":["Advanced processing of 3D meshes using Julia, and data science in Matlab.\n"]},{"type":"list","attributes":{},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["name","url"]}},"value":[{"type":"character","attributes":{},"value":["Anson Biggs"]},{"type":"character","attributes":{},"value":["https://ansonbiggs.com"]}]}]},{"type":"character","attributes":{},"value":["https://gitlab.com/orbital-debris-research/directed-study/report-2"]},{"type":"character","attributes":{},"value":["2022-04-03"]},{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["distill::distill_article"]}},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["self_contained"]}},"value":[{"type":"logical","attributes":{},"value":[false]}]}]},{"type":"character","attributes":{},"value":["Matlab","Orbital Debris","Julia"]},{"type":"character","attributes":{},"value":["Figures/final_scatter.png"]},{"type":"character","attributes":{},"value":["citations.bib"]},{"type":"logical","attributes":{},"value":[false]}]}
|
||
</script>
|
||
<!--/radix_placeholder_rmarkdown_metadata-->
|
||
|
||
<script type="text/json" id="radix-resource-manifest">
|
||
{"type":"character","attributes":{},"value":["citations.bib","Figures/assembly.jpg","Figures/biplots.png","Figures/cg_biplot.png","Figures/current_process.svg","Figures/final_scatter.png","Figures/first_scatter.png","Figures/inertia_biplot.png","machine-learning-directed-study-report-2_files/anchor-4.2.2/anchor.min.js","machine-learning-directed-study-report-2_files/bowser-1.9.3/bowser.min.js","machine-learning-directed-study-report-2_files/distill-2.2.21/template.v2.js","machine-learning-directed-study-report-2_files/header-attrs-2.13/header-attrs.js","machine-learning-directed-study-report-2_files/jquery-3.6.0/jquery-3.6.0.js","machine-learning-directed-study-report-2_files/jquery-3.6.0/jquery-3.6.0.min.js","machine-learning-directed-study-report-2_files/jquery-3.6.0/jquery-3.6.0.min.map","machine-learning-directed-study-report-2_files/popper-2.6.0/popper.min.js","machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy-bundle.umd.min.js","machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy-light-border.css","machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy.css","machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy.umd.min.js","machine-learning-directed-study-report-2_files/webcomponents-2.0.0/webcomponents.js"]}
|
||
</script>
|
||
<!--radix_placeholder_navigation_in_header-->
|
||
<!--/radix_placeholder_navigation_in_header-->
|
||
<!--radix_placeholder_distill-->
|
||
|
||
<style type="text/css">
|
||
|
||
body {
|
||
background-color: white;
|
||
}
|
||
|
||
.pandoc-table {
|
||
width: 100%;
|
||
}
|
||
|
||
.pandoc-table>caption {
|
||
margin-bottom: 10px;
|
||
}
|
||
|
||
.pandoc-table th:not([align]) {
|
||
text-align: left;
|
||
}
|
||
|
||
.pagedtable-footer {
|
||
font-size: 15px;
|
||
}
|
||
|
||
d-byline .byline {
|
||
grid-template-columns: 2fr 2fr;
|
||
}
|
||
|
||
d-byline .byline h3 {
|
||
margin-block-start: 1.5em;
|
||
}
|
||
|
||
d-byline .byline .authors-affiliations h3 {
|
||
margin-block-start: 0.5em;
|
||
}
|
||
|
||
.authors-affiliations .orcid-id {
|
||
width: 16px;
|
||
height:16px;
|
||
margin-left: 4px;
|
||
margin-right: 4px;
|
||
vertical-align: middle;
|
||
padding-bottom: 2px;
|
||
}
|
||
|
||
d-title .dt-tags {
|
||
margin-top: 1em;
|
||
grid-column: text;
|
||
}
|
||
|
||
.dt-tags .dt-tag {
|
||
text-decoration: none;
|
||
display: inline-block;
|
||
color: rgba(0,0,0,0.6);
|
||
padding: 0em 0.4em;
|
||
margin-right: 0.5em;
|
||
margin-bottom: 0.4em;
|
||
font-size: 70%;
|
||
border: 1px solid rgba(0,0,0,0.2);
|
||
border-radius: 3px;
|
||
text-transform: uppercase;
|
||
font-weight: 500;
|
||
}
|
||
|
||
d-article table.gt_table td,
|
||
d-article table.gt_table th {
|
||
border-bottom: none;
|
||
}
|
||
|
||
.html-widget {
|
||
margin-bottom: 2.0em;
|
||
}
|
||
|
||
.l-screen-inset {
|
||
padding-right: 16px;
|
||
}
|
||
|
||
.l-screen .caption {
|
||
margin-left: 10px;
|
||
}
|
||
|
||
.shaded {
|
||
background: rgb(247, 247, 247);
|
||
padding-top: 20px;
|
||
padding-bottom: 20px;
|
||
border-top: 1px solid rgba(0, 0, 0, 0.1);
|
||
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
|
||
}
|
||
|
||
.shaded .html-widget {
|
||
margin-bottom: 0;
|
||
border: 1px solid rgba(0, 0, 0, 0.1);
|
||
}
|
||
|
||
.shaded .shaded-content {
|
||
background: white;
|
||
}
|
||
|
||
.text-output {
|
||
margin-top: 0;
|
||
line-height: 1.5em;
|
||
}
|
||
|
||
.hidden {
|
||
display: none !important;
|
||
}
|
||
|
||
d-article {
|
||
padding-top: 2.5rem;
|
||
padding-bottom: 30px;
|
||
}
|
||
|
||
d-appendix {
|
||
padding-top: 30px;
|
||
}
|
||
|
||
d-article>p>img {
|
||
width: 100%;
|
||
}
|
||
|
||
d-article h2 {
|
||
margin: 1rem 0 1.5rem 0;
|
||
}
|
||
|
||
d-article h3 {
|
||
margin-top: 1.5rem;
|
||
}
|
||
|
||
d-article iframe {
|
||
border: 1px solid rgba(0, 0, 0, 0.1);
|
||
margin-bottom: 2.0em;
|
||
width: 100%;
|
||
}
|
||
|
||
/* Tweak code blocks */
|
||
|
||
d-article div.sourceCode code,
|
||
d-article pre code {
|
||
font-family: Consolas, Monaco, 'Andale Mono', 'Ubuntu Mono', monospace;
|
||
}
|
||
|
||
d-article pre,
|
||
d-article div.sourceCode,
|
||
d-article div.sourceCode pre {
|
||
overflow: auto;
|
||
}
|
||
|
||
d-article div.sourceCode {
|
||
background-color: white;
|
||
}
|
||
|
||
d-article div.sourceCode pre {
|
||
padding-left: 10px;
|
||
font-size: 12px;
|
||
border-left: 2px solid rgba(0,0,0,0.1);
|
||
}
|
||
|
||
d-article pre {
|
||
font-size: 12px;
|
||
color: black;
|
||
background: none;
|
||
margin-top: 0;
|
||
text-align: left;
|
||
white-space: pre;
|
||
word-spacing: normal;
|
||
word-break: normal;
|
||
word-wrap: normal;
|
||
line-height: 1.5;
|
||
|
||
-moz-tab-size: 4;
|
||
-o-tab-size: 4;
|
||
tab-size: 4;
|
||
|
||
-webkit-hyphens: none;
|
||
-moz-hyphens: none;
|
||
-ms-hyphens: none;
|
||
hyphens: none;
|
||
}
|
||
|
||
d-article pre a {
|
||
border-bottom: none;
|
||
}
|
||
|
||
d-article pre a:hover {
|
||
border-bottom: none;
|
||
text-decoration: underline;
|
||
}
|
||
|
||
d-article details {
|
||
grid-column: text;
|
||
margin-bottom: 0.8em;
|
||
}
|
||
|
||
@media(min-width: 768px) {
|
||
|
||
d-article pre,
|
||
d-article div.sourceCode,
|
||
d-article div.sourceCode pre {
|
||
overflow: visible !important;
|
||
}
|
||
|
||
d-article div.sourceCode pre {
|
||
padding-left: 18px;
|
||
font-size: 14px;
|
||
}
|
||
|
||
d-article pre {
|
||
font-size: 14px;
|
||
}
|
||
|
||
}
|
||
|
||
figure img.external {
|
||
background: white;
|
||
border: 1px solid rgba(0, 0, 0, 0.1);
|
||
box-shadow: 0 1px 8px rgba(0, 0, 0, 0.1);
|
||
padding: 18px;
|
||
box-sizing: border-box;
|
||
}
|
||
|
||
/* CSS for d-contents */
|
||
|
||
.d-contents {
|
||
grid-column: text;
|
||
color: rgba(0,0,0,0.8);
|
||
font-size: 0.9em;
|
||
padding-bottom: 1em;
|
||
margin-bottom: 1em;
|
||
padding-bottom: 0.5em;
|
||
margin-bottom: 1em;
|
||
padding-left: 0.25em;
|
||
justify-self: start;
|
||
}
|
||
|
||
@media(min-width: 1000px) {
|
||
.d-contents.d-contents-float {
|
||
height: 0;
|
||
grid-column-start: 1;
|
||
grid-column-end: 4;
|
||
justify-self: center;
|
||
padding-right: 3em;
|
||
padding-left: 2em;
|
||
}
|
||
}
|
||
|
||
.d-contents nav h3 {
|
||
font-size: 18px;
|
||
margin-top: 0;
|
||
margin-bottom: 1em;
|
||
}
|
||
|
||
.d-contents li {
|
||
list-style-type: none
|
||
}
|
||
|
||
.d-contents nav > ul {
|
||
padding-left: 0;
|
||
}
|
||
|
||
.d-contents ul {
|
||
padding-left: 1em
|
||
}
|
||
|
||
.d-contents nav ul li {
|
||
margin-top: 0.6em;
|
||
margin-bottom: 0.2em;
|
||
}
|
||
|
||
.d-contents nav a {
|
||
font-size: 13px;
|
||
border-bottom: none;
|
||
text-decoration: none
|
||
color: rgba(0, 0, 0, 0.8);
|
||
}
|
||
|
||
.d-contents nav a:hover {
|
||
text-decoration: underline solid rgba(0, 0, 0, 0.6)
|
||
}
|
||
|
||
.d-contents nav > ul > li > a {
|
||
font-weight: 600;
|
||
}
|
||
|
||
.d-contents nav > ul > li > ul {
|
||
font-weight: inherit;
|
||
}
|
||
|
||
.d-contents nav > ul > li > ul > li {
|
||
margin-top: 0.2em;
|
||
}
|
||
|
||
|
||
.d-contents nav ul {
|
||
margin-top: 0;
|
||
margin-bottom: 0.25em;
|
||
}
|
||
|
||
.d-article-with-toc h2:nth-child(2) {
|
||
margin-top: 0;
|
||
}
|
||
|
||
|
||
/* Figure */
|
||
|
||
.figure {
|
||
position: relative;
|
||
margin-bottom: 2.5em;
|
||
margin-top: 1.5em;
|
||
}
|
||
|
||
.figure img {
|
||
width: 100%;
|
||
}
|
||
|
||
.figure .caption {
|
||
color: rgba(0, 0, 0, 0.6);
|
||
font-size: 12px;
|
||
line-height: 1.5em;
|
||
}
|
||
|
||
.figure img.external {
|
||
background: white;
|
||
border: 1px solid rgba(0, 0, 0, 0.1);
|
||
box-shadow: 0 1px 8px rgba(0, 0, 0, 0.1);
|
||
padding: 18px;
|
||
box-sizing: border-box;
|
||
}
|
||
|
||
.figure .caption a {
|
||
color: rgba(0, 0, 0, 0.6);
|
||
}
|
||
|
||
.figure .caption b,
|
||
.figure .caption strong, {
|
||
font-weight: 600;
|
||
color: rgba(0, 0, 0, 1.0);
|
||
}
|
||
|
||
/* Citations */
|
||
|
||
d-article .citation {
|
||
color: inherit;
|
||
cursor: inherit;
|
||
}
|
||
|
||
div.hanging-indent{
|
||
margin-left: 1em; text-indent: -1em;
|
||
}
|
||
|
||
/* Citation hover box */
|
||
|
||
.tippy-box[data-theme~=light-border] {
|
||
background-color: rgba(250, 250, 250, 0.95);
|
||
}
|
||
|
||
.tippy-content > p {
|
||
margin-bottom: 0;
|
||
padding: 2px;
|
||
}
|
||
|
||
|
||
/* Tweak 1000px media break to show more text */
|
||
|
||
@media(min-width: 1000px) {
|
||
.base-grid,
|
||
distill-header,
|
||
d-title,
|
||
d-abstract,
|
||
d-article,
|
||
d-appendix,
|
||
distill-appendix,
|
||
d-byline,
|
||
d-footnote-list,
|
||
d-citation-list,
|
||
distill-footer {
|
||
grid-template-columns: [screen-start] 1fr [page-start kicker-start] 80px [middle-start] 50px [text-start kicker-end] 65px 65px 65px 65px 65px 65px 65px 65px [text-end gutter-start] 65px [middle-end] 65px [page-end gutter-end] 1fr [screen-end];
|
||
grid-column-gap: 16px;
|
||
}
|
||
|
||
.grid {
|
||
grid-column-gap: 16px;
|
||
}
|
||
|
||
d-article {
|
||
font-size: 1.06rem;
|
||
line-height: 1.7em;
|
||
}
|
||
figure .caption, .figure .caption, figure figcaption {
|
||
font-size: 13px;
|
||
}
|
||
}
|
||
|
||
@media(min-width: 1180px) {
|
||
.base-grid,
|
||
distill-header,
|
||
d-title,
|
||
d-abstract,
|
||
d-article,
|
||
d-appendix,
|
||
distill-appendix,
|
||
d-byline,
|
||
d-footnote-list,
|
||
d-citation-list,
|
||
distill-footer {
|
||
grid-template-columns: [screen-start] 1fr [page-start kicker-start] 60px [middle-start] 60px [text-start kicker-end] 60px 60px 60px 60px 60px 60px 60px 60px [text-end gutter-start] 60px [middle-end] 60px [page-end gutter-end] 1fr [screen-end];
|
||
grid-column-gap: 32px;
|
||
}
|
||
|
||
.grid {
|
||
grid-column-gap: 32px;
|
||
}
|
||
}
|
||
|
||
|
||
/* Get the citation styles for the appendix (not auto-injected on render since
|
||
we do our own rendering of the citation appendix) */
|
||
|
||
d-appendix .citation-appendix,
|
||
.d-appendix .citation-appendix {
|
||
font-size: 11px;
|
||
line-height: 15px;
|
||
border-left: 1px solid rgba(0, 0, 0, 0.1);
|
||
padding-left: 18px;
|
||
border: 1px solid rgba(0,0,0,0.1);
|
||
background: rgba(0, 0, 0, 0.02);
|
||
padding: 10px 18px;
|
||
border-radius: 3px;
|
||
color: rgba(150, 150, 150, 1);
|
||
overflow: hidden;
|
||
margin-top: -12px;
|
||
white-space: pre-wrap;
|
||
word-wrap: break-word;
|
||
}
|
||
|
||
/* Include appendix styles here so they can be overridden */
|
||
|
||
d-appendix {
|
||
contain: layout style;
|
||
font-size: 0.8em;
|
||
line-height: 1.7em;
|
||
margin-top: 60px;
|
||
margin-bottom: 0;
|
||
border-top: 1px solid rgba(0, 0, 0, 0.1);
|
||
color: rgba(0,0,0,0.5);
|
||
padding-top: 60px;
|
||
padding-bottom: 48px;
|
||
}
|
||
|
||
d-appendix h3 {
|
||
grid-column: page-start / text-start;
|
||
font-size: 15px;
|
||
font-weight: 500;
|
||
margin-top: 1em;
|
||
margin-bottom: 0;
|
||
color: rgba(0,0,0,0.65);
|
||
}
|
||
|
||
d-appendix h3 + * {
|
||
margin-top: 1em;
|
||
}
|
||
|
||
d-appendix ol {
|
||
padding: 0 0 0 15px;
|
||
}
|
||
|
||
@media (min-width: 768px) {
|
||
d-appendix ol {
|
||
padding: 0 0 0 30px;
|
||
margin-left: -30px;
|
||
}
|
||
}
|
||
|
||
d-appendix li {
|
||
margin-bottom: 1em;
|
||
}
|
||
|
||
d-appendix a {
|
||
color: rgba(0, 0, 0, 0.6);
|
||
}
|
||
|
||
d-appendix > * {
|
||
grid-column: text;
|
||
}
|
||
|
||
d-appendix > d-footnote-list,
|
||
d-appendix > d-citation-list,
|
||
d-appendix > distill-appendix {
|
||
grid-column: screen;
|
||
}
|
||
|
||
/* Include footnote styles here so they can be overridden */
|
||
|
||
d-footnote-list {
|
||
contain: layout style;
|
||
}
|
||
|
||
d-footnote-list > * {
|
||
grid-column: text;
|
||
}
|
||
|
||
d-footnote-list a.footnote-backlink {
|
||
color: rgba(0,0,0,0.3);
|
||
padding-left: 0.5em;
|
||
}
|
||
|
||
|
||
|
||
/* Anchor.js */
|
||
|
||
.anchorjs-link {
|
||
/*transition: all .25s linear; */
|
||
text-decoration: none;
|
||
border-bottom: none;
|
||
}
|
||
*:hover > .anchorjs-link {
|
||
margin-left: -1.125em !important;
|
||
text-decoration: none;
|
||
border-bottom: none;
|
||
}
|
||
|
||
/* Social footer */
|
||
|
||
.social_footer {
|
||
margin-top: 30px;
|
||
margin-bottom: 0;
|
||
color: rgba(0,0,0,0.67);
|
||
}
|
||
|
||
.disqus-comments {
|
||
margin-right: 30px;
|
||
}
|
||
|
||
.disqus-comment-count {
|
||
border-bottom: 1px solid rgba(0, 0, 0, 0.4);
|
||
cursor: pointer;
|
||
}
|
||
|
||
#disqus_thread {
|
||
margin-top: 30px;
|
||
}
|
||
|
||
.article-sharing a {
|
||
border-bottom: none;
|
||
margin-right: 8px;
|
||
}
|
||
|
||
.article-sharing a:hover {
|
||
border-bottom: none;
|
||
}
|
||
|
||
.sidebar-section.subscribe {
|
||
font-size: 12px;
|
||
line-height: 1.6em;
|
||
}
|
||
|
||
.subscribe p {
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
|
||
.article-footer .subscribe {
|
||
font-size: 15px;
|
||
margin-top: 45px;
|
||
}
|
||
|
||
|
||
.sidebar-section.custom {
|
||
font-size: 12px;
|
||
line-height: 1.6em;
|
||
}
|
||
|
||
.custom p {
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
/* Styles for listing layout (hide title) */
|
||
.layout-listing d-title, .layout-listing .d-title {
|
||
display: none;
|
||
}
|
||
|
||
/* Styles for posts lists (not auto-injected) */
|
||
|
||
|
||
.posts-with-sidebar {
|
||
padding-left: 45px;
|
||
padding-right: 45px;
|
||
}
|
||
|
||
.posts-list .description h2,
|
||
.posts-list .description p {
|
||
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", Arial, sans-serif;
|
||
}
|
||
|
||
.posts-list .description h2 {
|
||
font-weight: 700;
|
||
border-bottom: none;
|
||
padding-bottom: 0;
|
||
}
|
||
|
||
.posts-list h2.post-tag {
|
||
border-bottom: 1px solid rgba(0, 0, 0, 0.2);
|
||
padding-bottom: 12px;
|
||
}
|
||
.posts-list {
|
||
margin-top: 60px;
|
||
margin-bottom: 24px;
|
||
}
|
||
|
||
.posts-list .post-preview {
|
||
text-decoration: none;
|
||
overflow: hidden;
|
||
display: block;
|
||
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
|
||
padding: 24px 0;
|
||
}
|
||
|
||
.post-preview-last {
|
||
border-bottom: none !important;
|
||
}
|
||
|
||
.posts-list .posts-list-caption {
|
||
grid-column: screen;
|
||
font-weight: 400;
|
||
}
|
||
|
||
.posts-list .post-preview h2 {
|
||
margin: 0 0 6px 0;
|
||
line-height: 1.2em;
|
||
font-style: normal;
|
||
font-size: 24px;
|
||
}
|
||
|
||
.posts-list .post-preview p {
|
||
margin: 0 0 12px 0;
|
||
line-height: 1.4em;
|
||
font-size: 16px;
|
||
}
|
||
|
||
.posts-list .post-preview .thumbnail {
|
||
box-sizing: border-box;
|
||
margin-bottom: 24px;
|
||
position: relative;
|
||
max-width: 500px;
|
||
}
|
||
.posts-list .post-preview img {
|
||
width: 100%;
|
||
display: block;
|
||
}
|
||
|
||
.posts-list .metadata {
|
||
font-size: 12px;
|
||
line-height: 1.4em;
|
||
margin-bottom: 18px;
|
||
}
|
||
|
||
.posts-list .metadata > * {
|
||
display: inline-block;
|
||
}
|
||
|
||
.posts-list .metadata .publishedDate {
|
||
margin-right: 2em;
|
||
}
|
||
|
||
.posts-list .metadata .dt-authors {
|
||
display: block;
|
||
margin-top: 0.3em;
|
||
margin-right: 2em;
|
||
}
|
||
|
||
.posts-list .dt-tags {
|
||
display: block;
|
||
line-height: 1em;
|
||
}
|
||
|
||
.posts-list .dt-tags .dt-tag {
|
||
display: inline-block;
|
||
color: rgba(0,0,0,0.6);
|
||
padding: 0.3em 0.4em;
|
||
margin-right: 0.2em;
|
||
margin-bottom: 0.4em;
|
||
font-size: 60%;
|
||
border: 1px solid rgba(0,0,0,0.2);
|
||
border-radius: 3px;
|
||
text-transform: uppercase;
|
||
font-weight: 500;
|
||
}
|
||
|
||
.posts-list img {
|
||
opacity: 1;
|
||
}
|
||
|
||
.posts-list img[data-src] {
|
||
opacity: 0;
|
||
}
|
||
|
||
.posts-more {
|
||
clear: both;
|
||
}
|
||
|
||
|
||
.posts-sidebar {
|
||
font-size: 16px;
|
||
}
|
||
|
||
.posts-sidebar h3 {
|
||
font-size: 16px;
|
||
margin-top: 0;
|
||
margin-bottom: 0.5em;
|
||
font-weight: 400;
|
||
text-transform: uppercase;
|
||
}
|
||
|
||
.sidebar-section {
|
||
margin-bottom: 30px;
|
||
}
|
||
|
||
.categories ul {
|
||
list-style-type: none;
|
||
margin: 0;
|
||
padding: 0;
|
||
}
|
||
|
||
.categories li {
|
||
color: rgba(0, 0, 0, 0.8);
|
||
margin-bottom: 0;
|
||
}
|
||
|
||
.categories li>a {
|
||
border-bottom: none;
|
||
}
|
||
|
||
.categories li>a:hover {
|
||
border-bottom: 1px solid rgba(0, 0, 0, 0.4);
|
||
}
|
||
|
||
.categories .active {
|
||
font-weight: 600;
|
||
}
|
||
|
||
.categories .category-count {
|
||
color: rgba(0, 0, 0, 0.4);
|
||
}
|
||
|
||
|
||
@media(min-width: 768px) {
|
||
.posts-list .post-preview h2 {
|
||
font-size: 26px;
|
||
}
|
||
.posts-list .post-preview .thumbnail {
|
||
float: right;
|
||
width: 30%;
|
||
margin-bottom: 0;
|
||
}
|
||
.posts-list .post-preview .description {
|
||
float: left;
|
||
width: 45%;
|
||
}
|
||
.posts-list .post-preview .metadata {
|
||
float: left;
|
||
width: 20%;
|
||
margin-top: 8px;
|
||
}
|
||
.posts-list .post-preview p {
|
||
margin: 0 0 12px 0;
|
||
line-height: 1.5em;
|
||
font-size: 16px;
|
||
}
|
||
.posts-with-sidebar .posts-list {
|
||
float: left;
|
||
width: 75%;
|
||
}
|
||
.posts-with-sidebar .posts-sidebar {
|
||
float: right;
|
||
width: 20%;
|
||
margin-top: 60px;
|
||
padding-top: 24px;
|
||
padding-bottom: 24px;
|
||
}
|
||
}
|
||
|
||
|
||
/* Improve display for browsers without grid (IE/Edge <= 15) */
|
||
|
||
.downlevel {
|
||
line-height: 1.6em;
|
||
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", Arial, sans-serif;
|
||
margin: 0;
|
||
}
|
||
|
||
.downlevel .d-title {
|
||
padding-top: 6rem;
|
||
padding-bottom: 1.5rem;
|
||
}
|
||
|
||
.downlevel .d-title h1 {
|
||
font-size: 50px;
|
||
font-weight: 700;
|
||
line-height: 1.1em;
|
||
margin: 0 0 0.5rem;
|
||
}
|
||
|
||
.downlevel .d-title p {
|
||
font-weight: 300;
|
||
font-size: 1.2rem;
|
||
line-height: 1.55em;
|
||
margin-top: 0;
|
||
}
|
||
|
||
.downlevel .d-byline {
|
||
padding-top: 0.8em;
|
||
padding-bottom: 0.8em;
|
||
font-size: 0.8rem;
|
||
line-height: 1.8em;
|
||
}
|
||
|
||
.downlevel .section-separator {
|
||
border: none;
|
||
border-top: 1px solid rgba(0, 0, 0, 0.1);
|
||
}
|
||
|
||
.downlevel .d-article {
|
||
font-size: 1.06rem;
|
||
line-height: 1.7em;
|
||
padding-top: 1rem;
|
||
padding-bottom: 2rem;
|
||
}
|
||
|
||
|
||
.downlevel .d-appendix {
|
||
padding-left: 0;
|
||
padding-right: 0;
|
||
max-width: none;
|
||
font-size: 0.8em;
|
||
line-height: 1.7em;
|
||
margin-bottom: 0;
|
||
color: rgba(0,0,0,0.5);
|
||
padding-top: 40px;
|
||
padding-bottom: 48px;
|
||
}
|
||
|
||
.downlevel .footnotes ol {
|
||
padding-left: 13px;
|
||
}
|
||
|
||
.downlevel .base-grid,
|
||
.downlevel .distill-header,
|
||
.downlevel .d-title,
|
||
.downlevel .d-abstract,
|
||
.downlevel .d-article,
|
||
.downlevel .d-appendix,
|
||
.downlevel .distill-appendix,
|
||
.downlevel .d-byline,
|
||
.downlevel .d-footnote-list,
|
||
.downlevel .d-citation-list,
|
||
.downlevel .distill-footer,
|
||
.downlevel .appendix-bottom,
|
||
.downlevel .posts-container {
|
||
padding-left: 40px;
|
||
padding-right: 40px;
|
||
}
|
||
|
||
@media(min-width: 768px) {
|
||
.downlevel .base-grid,
|
||
.downlevel .distill-header,
|
||
.downlevel .d-title,
|
||
.downlevel .d-abstract,
|
||
.downlevel .d-article,
|
||
.downlevel .d-appendix,
|
||
.downlevel .distill-appendix,
|
||
.downlevel .d-byline,
|
||
.downlevel .d-footnote-list,
|
||
.downlevel .d-citation-list,
|
||
.downlevel .distill-footer,
|
||
.downlevel .appendix-bottom,
|
||
.downlevel .posts-container {
|
||
padding-left: 150px;
|
||
padding-right: 150px;
|
||
max-width: 900px;
|
||
}
|
||
}
|
||
|
||
.downlevel pre code {
|
||
display: block;
|
||
border-left: 2px solid rgba(0, 0, 0, .1);
|
||
padding: 0 0 0 20px;
|
||
font-size: 14px;
|
||
}
|
||
|
||
.downlevel code, .downlevel pre {
|
||
color: black;
|
||
background: none;
|
||
font-family: Consolas, Monaco, 'Andale Mono', 'Ubuntu Mono', monospace;
|
||
text-align: left;
|
||
white-space: pre;
|
||
word-spacing: normal;
|
||
word-break: normal;
|
||
word-wrap: normal;
|
||
line-height: 1.5;
|
||
|
||
-moz-tab-size: 4;
|
||
-o-tab-size: 4;
|
||
tab-size: 4;
|
||
|
||
-webkit-hyphens: none;
|
||
-moz-hyphens: none;
|
||
-ms-hyphens: none;
|
||
hyphens: none;
|
||
}
|
||
|
||
.downlevel .posts-list .post-preview {
|
||
color: inherit;
|
||
}
|
||
|
||
|
||
|
||
</style>
|
||
|
||
<script type="application/javascript">
|
||
|
||
function is_downlevel_browser() {
|
||
if (bowser.isUnsupportedBrowser({ msie: "12", msedge: "16"},
|
||
window.navigator.userAgent)) {
|
||
return true;
|
||
} else {
|
||
return window.load_distill_framework === undefined;
|
||
}
|
||
}
|
||
|
||
// show body when load is complete
|
||
function on_load_complete() {
|
||
|
||
// add anchors
|
||
if (window.anchors) {
|
||
window.anchors.options.placement = 'left';
|
||
window.anchors.add('d-article > h2, d-article > h3, d-article > h4, d-article > h5');
|
||
}
|
||
|
||
|
||
// set body to visible
|
||
document.body.style.visibility = 'visible';
|
||
|
||
// force redraw for leaflet widgets
|
||
if (window.HTMLWidgets) {
|
||
var maps = window.HTMLWidgets.findAll(".leaflet");
|
||
$.each(maps, function(i, el) {
|
||
var map = this.getMap();
|
||
map.invalidateSize();
|
||
map.eachLayer(function(layer) {
|
||
if (layer instanceof L.TileLayer)
|
||
layer.redraw();
|
||
});
|
||
});
|
||
}
|
||
|
||
// trigger 'shown' so htmlwidgets resize
|
||
$('d-article').trigger('shown');
|
||
}
|
||
|
||
function init_distill() {
|
||
|
||
init_common();
|
||
|
||
// create front matter
|
||
var front_matter = $('<d-front-matter></d-front-matter>');
|
||
$('#distill-front-matter').wrap(front_matter);
|
||
|
||
// create d-title
|
||
$('.d-title').changeElementType('d-title');
|
||
|
||
// create d-byline
|
||
var byline = $('<d-byline></d-byline>');
|
||
$('.d-byline').replaceWith(byline);
|
||
|
||
// create d-article
|
||
var article = $('<d-article></d-article>');
|
||
$('.d-article').wrap(article).children().unwrap();
|
||
|
||
// move posts container into article
|
||
$('.posts-container').appendTo($('d-article'));
|
||
|
||
// create d-appendix
|
||
$('.d-appendix').changeElementType('d-appendix');
|
||
|
||
// flag indicating that we have appendix items
|
||
var appendix = $('.appendix-bottom').children('h3').length > 0;
|
||
|
||
// replace footnotes with <d-footnote>
|
||
$('.footnote-ref').each(function(i, val) {
|
||
appendix = true;
|
||
var href = $(this).attr('href');
|
||
var id = href.replace('#', '');
|
||
var fn = $('#' + id);
|
||
var fn_p = $('#' + id + '>p');
|
||
fn_p.find('.footnote-back').remove();
|
||
var text = fn_p.html();
|
||
var dtfn = $('<d-footnote></d-footnote>');
|
||
dtfn.html(text);
|
||
$(this).replaceWith(dtfn);
|
||
});
|
||
// remove footnotes
|
||
$('.footnotes').remove();
|
||
|
||
// move refs into #references-listing
|
||
$('#references-listing').replaceWith($('#refs'));
|
||
|
||
$('h1.appendix, h2.appendix').each(function(i, val) {
|
||
$(this).changeElementType('h3');
|
||
});
|
||
$('h3.appendix').each(function(i, val) {
|
||
var id = $(this).attr('id');
|
||
$('.d-contents a[href="#' + id + '"]').parent().remove();
|
||
appendix = true;
|
||
$(this).nextUntil($('h1, h2, h3')).addBack().appendTo($('d-appendix'));
|
||
});
|
||
|
||
// show d-appendix if we have appendix content
|
||
$("d-appendix").css('display', appendix ? 'grid' : 'none');
|
||
|
||
// localize layout chunks to just output
|
||
$('.layout-chunk').each(function(i, val) {
|
||
|
||
// capture layout
|
||
var layout = $(this).attr('data-layout');
|
||
|
||
// apply layout to markdown level block elements
|
||
var elements = $(this).children().not('details, div.sourceCode, pre, script');
|
||
elements.each(function(i, el) {
|
||
var layout_div = $('<div class="' + layout + '"></div>');
|
||
if (layout_div.hasClass('shaded')) {
|
||
var shaded_content = $('<div class="shaded-content"></div>');
|
||
$(this).wrap(shaded_content);
|
||
$(this).parent().wrap(layout_div);
|
||
} else {
|
||
$(this).wrap(layout_div);
|
||
}
|
||
});
|
||
|
||
|
||
// unwrap the layout-chunk div
|
||
$(this).children().unwrap();
|
||
});
|
||
|
||
// remove code block used to force highlighting css
|
||
$('.distill-force-highlighting-css').parent().remove();
|
||
|
||
// remove empty line numbers inserted by pandoc when using a
|
||
// custom syntax highlighting theme
|
||
$('code.sourceCode a:empty').remove();
|
||
|
||
// load distill framework
|
||
load_distill_framework();
|
||
|
||
// wait for window.distillRunlevel == 4 to do post processing
|
||
function distill_post_process() {
|
||
|
||
if (!window.distillRunlevel || window.distillRunlevel < 4)
|
||
return;
|
||
|
||
// hide author/affiliations entirely if we have no authors
|
||
var front_matter = JSON.parse($("#distill-front-matter").html());
|
||
var have_authors = front_matter.authors && front_matter.authors.length > 0;
|
||
if (!have_authors)
|
||
$('d-byline').addClass('hidden');
|
||
|
||
// article with toc class
|
||
$('.d-contents').parent().addClass('d-article-with-toc');
|
||
|
||
// strip links that point to #
|
||
$('.authors-affiliations').find('a[href="#"]').removeAttr('href');
|
||
|
||
// add orcid ids
|
||
$('.authors-affiliations').find('.author').each(function(i, el) {
|
||
var orcid_id = front_matter.authors[i].orcidID;
|
||
if (orcid_id) {
|
||
var a = $('<a></a>');
|
||
a.attr('href', 'https://orcid.org/' + orcid_id);
|
||
var img = $('<img></img>');
|
||
img.addClass('orcid-id');
|
||
img.attr('alt', 'ORCID ID');
|
||
img.attr('src','');
|
||
a.append(img);
|
||
$(this).append(a);
|
||
}
|
||
});
|
||
|
||
// hide elements of author/affiliations grid that have no value
|
||
function hide_byline_column(caption) {
|
||
$('d-byline').find('h3:contains("' + caption + '")').parent().css('visibility', 'hidden');
|
||
}
|
||
|
||
// affiliations
|
||
var have_affiliations = false;
|
||
for (var i = 0; i<front_matter.authors.length; ++i) {
|
||
var author = front_matter.authors[i];
|
||
if (author.affiliation !== " ") {
|
||
have_affiliations = true;
|
||
break;
|
||
}
|
||
}
|
||
if (!have_affiliations)
|
||
$('d-byline').find('h3:contains("Affiliations")').css('visibility', 'hidden');
|
||
|
||
// published date
|
||
if (!front_matter.publishedDate)
|
||
hide_byline_column("Published");
|
||
|
||
// document object identifier
|
||
var doi = $('d-byline').find('h3:contains("DOI")');
|
||
var doi_p = doi.next().empty();
|
||
if (!front_matter.doi) {
|
||
// if we have a citation and valid citationText then link to that
|
||
if ($('#citation').length > 0 && front_matter.citationText) {
|
||
doi.html('Citation');
|
||
$('<a href="#citation"></a>')
|
||
.text(front_matter.citationText)
|
||
.appendTo(doi_p);
|
||
} else {
|
||
hide_byline_column("DOI");
|
||
}
|
||
} else {
|
||
$('<a></a>')
|
||
.attr('href', "https://doi.org/" + front_matter.doi)
|
||
.html(front_matter.doi)
|
||
.appendTo(doi_p);
|
||
}
|
||
|
||
// change plural form of authors/affiliations
|
||
if (front_matter.authors.length === 1) {
|
||
var grid = $('.authors-affiliations');
|
||
grid.children('h3:contains("Authors")').text('Author');
|
||
grid.children('h3:contains("Affiliations")').text('Affiliation');
|
||
}
|
||
|
||
// remove d-appendix and d-footnote-list local styles
|
||
$('d-appendix > style:first-child').remove();
|
||
$('d-footnote-list > style:first-child').remove();
|
||
|
||
// move appendix-bottom entries to the bottom
|
||
$('.appendix-bottom').appendTo('d-appendix').children().unwrap();
|
||
$('.appendix-bottom').remove();
|
||
|
||
// hoverable references
|
||
$('span.citation[data-cites]').each(function() {
|
||
var refs = $(this).attr('data-cites').split(" ");
|
||
var refHtml = refs.map(function(ref) {
|
||
return "<p>" + $('#ref-' + ref).html() + "</p>";
|
||
}).join("\n");
|
||
window.tippy(this, {
|
||
allowHTML: true,
|
||
content: refHtml,
|
||
maxWidth: 500,
|
||
interactive: true,
|
||
interactiveBorder: 10,
|
||
theme: 'light-border',
|
||
placement: 'bottom-start'
|
||
});
|
||
});
|
||
|
||
// clear polling timer
|
||
clearInterval(tid);
|
||
|
||
// show body now that everything is ready
|
||
on_load_complete();
|
||
}
|
||
|
||
var tid = setInterval(distill_post_process, 50);
|
||
distill_post_process();
|
||
|
||
}
|
||
|
||
function init_downlevel() {
|
||
|
||
init_common();
|
||
|
||
// insert hr after d-title
|
||
$('.d-title').after($('<hr class="section-separator"/>'));
|
||
|
||
// check if we have authors
|
||
var front_matter = JSON.parse($("#distill-front-matter").html());
|
||
var have_authors = front_matter.authors && front_matter.authors.length > 0;
|
||
|
||
// manage byline/border
|
||
if (!have_authors)
|
||
$('.d-byline').remove();
|
||
$('.d-byline').after($('<hr class="section-separator"/>'));
|
||
$('.d-byline a').remove();
|
||
|
||
// remove toc
|
||
$('.d-contents').remove();
|
||
|
||
// move appendix elements
|
||
$('h1.appendix, h2.appendix').each(function(i, val) {
|
||
$(this).changeElementType('h3');
|
||
});
|
||
$('h3.appendix').each(function(i, val) {
|
||
$(this).nextUntil($('h1, h2, h3')).addBack().appendTo($('.d-appendix'));
|
||
});
|
||
|
||
|
||
// inject headers into references and footnotes
|
||
var refs_header = $('<h3></h3>');
|
||
refs_header.text('References');
|
||
$('#refs').prepend(refs_header);
|
||
|
||
var footnotes_header = $('<h3></h3');
|
||
footnotes_header.text('Footnotes');
|
||
$('.footnotes').children('hr').first().replaceWith(footnotes_header);
|
||
|
||
// move appendix-bottom entries to the bottom
|
||
$('.appendix-bottom').appendTo('.d-appendix').children().unwrap();
|
||
$('.appendix-bottom').remove();
|
||
|
||
// remove appendix if it's empty
|
||
if ($('.d-appendix').children().length === 0)
|
||
$('.d-appendix').remove();
|
||
|
||
// prepend separator above appendix
|
||
$('.d-appendix').before($('<hr class="section-separator" style="clear: both"/>'));
|
||
|
||
// trim code
|
||
$('pre>code').each(function(i, val) {
|
||
$(this).html($.trim($(this).html()));
|
||
});
|
||
|
||
// move posts-container right before article
|
||
$('.posts-container').insertBefore($('.d-article'));
|
||
|
||
$('body').addClass('downlevel');
|
||
|
||
on_load_complete();
|
||
}
|
||
|
||
|
||
function init_common() {
|
||
|
||
// jquery plugin to change element types
|
||
(function($) {
|
||
$.fn.changeElementType = function(newType) {
|
||
var attrs = {};
|
||
|
||
$.each(this[0].attributes, function(idx, attr) {
|
||
attrs[attr.nodeName] = attr.nodeValue;
|
||
});
|
||
|
||
this.replaceWith(function() {
|
||
return $("<" + newType + "/>", attrs).append($(this).contents());
|
||
});
|
||
};
|
||
})(jQuery);
|
||
|
||
// prevent underline for linked images
|
||
$('a > img').parent().css({'border-bottom' : 'none'});
|
||
|
||
// mark non-body figures created by knitr chunks as 100% width
|
||
$('.layout-chunk').each(function(i, val) {
|
||
var figures = $(this).find('img, .html-widget');
|
||
if ($(this).attr('data-layout') !== "l-body") {
|
||
figures.css('width', '100%');
|
||
} else {
|
||
figures.css('max-width', '100%');
|
||
figures.filter("[width]").each(function(i, val) {
|
||
var fig = $(this);
|
||
fig.css('width', fig.attr('width') + 'px');
|
||
});
|
||
|
||
}
|
||
});
|
||
|
||
// auto-append index.html to post-preview links in file: protocol
|
||
// and in rstudio ide preview
|
||
$('.post-preview').each(function(i, val) {
|
||
if (window.location.protocol === "file:")
|
||
$(this).attr('href', $(this).attr('href') + "index.html");
|
||
});
|
||
|
||
// get rid of index.html references in header
|
||
if (window.location.protocol !== "file:") {
|
||
$('.distill-site-header a[href]').each(function(i,val) {
|
||
$(this).attr('href', $(this).attr('href').replace("index.html", "./"));
|
||
});
|
||
}
|
||
|
||
// add class to pandoc style tables
|
||
$('tr.header').parent('thead').parent('table').addClass('pandoc-table');
|
||
$('.kable-table').children('table').addClass('pandoc-table');
|
||
|
||
// add figcaption style to table captions
|
||
$('caption').parent('table').addClass("figcaption");
|
||
|
||
// initialize posts list
|
||
if (window.init_posts_list)
|
||
window.init_posts_list();
|
||
|
||
// implmement disqus comment link
|
||
$('.disqus-comment-count').click(function() {
|
||
window.headroom_prevent_pin = true;
|
||
$('#disqus_thread').toggleClass('hidden');
|
||
if (!$('#disqus_thread').hasClass('hidden')) {
|
||
var offset = $(this).offset();
|
||
$(window).resize();
|
||
$('html, body').animate({
|
||
scrollTop: offset.top - 35
|
||
});
|
||
}
|
||
});
|
||
}
|
||
|
||
document.addEventListener('DOMContentLoaded', function() {
|
||
if (is_downlevel_browser())
|
||
init_downlevel();
|
||
else
|
||
window.addEventListener('WebComponentsReady', init_distill);
|
||
});
|
||
|
||
</script>
|
||
|
||
<!--/radix_placeholder_distill-->
|
||
<script src="machine-learning-directed-study-report-2_files/header-attrs-2.13/header-attrs.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/jquery-3.6.0/jquery-3.6.0.min.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/popper-2.6.0/popper.min.js"></script>
|
||
<link href="machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy.css" rel="stylesheet" />
|
||
<link href="machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy-light-border.css" rel="stylesheet" />
|
||
<script src="machine-learning-directed-study-report-2_files/tippy-6.2.7/tippy.umd.min.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/anchor-4.2.2/anchor.min.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/bowser-1.9.3/bowser.min.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/webcomponents-2.0.0/webcomponents.js"></script>
|
||
<script src="machine-learning-directed-study-report-2_files/distill-2.2.21/template.v2.js"></script>
|
||
<!--radix_placeholder_site_in_header-->
|
||
<!--/radix_placeholder_site_in_header-->
|
||
|
||
|
||
</head>
|
||
|
||
<body>
|
||
|
||
<!--radix_placeholder_front_matter-->
|
||
|
||
<script id="distill-front-matter" type="text/json">
|
||
{"title":"Machine Learning Directed Study Report 2","description":"Advanced processing of 3D meshes using Julia, and data science in Matlab.","authors":[{"author":"Anson Biggs","authorURL":"https://ansonbiggs.com","affiliation":" ","affiliationURL":"#","orcidID":""}],"publishedDate":"2022-04-03T00:00:00.000-07:00","citationText":"Biggs, 2022"}
|
||
</script>
|
||
|
||
<!--/radix_placeholder_front_matter-->
|
||
<!--radix_placeholder_navigation_before_body-->
|
||
<!--/radix_placeholder_navigation_before_body-->
|
||
<!--radix_placeholder_site_before_body-->
|
||
<!--/radix_placeholder_site_before_body-->
|
||
|
||
<div class="d-title">
|
||
<h1>Machine Learning Directed Study Report 2</h1>
|
||
<!--radix_placeholder_categories-->
|
||
<div class="dt-tags">
|
||
<div class="dt=tag">Matlab</div>
|
||
<div class="dt=tag">Orbital Debris</div>
|
||
<div class="dt=tag">Julia</div>
|
||
</div>
|
||
<!--/radix_placeholder_categories-->
|
||
<p><p>Advanced processing of 3D meshes using Julia, and data science in Matlab.</p></p>
|
||
</div>
|
||
|
||
<div class="d-byline">
|
||
Anson Biggs <a href="https://ansonbiggs.com" class="uri">https://ansonbiggs.com</a>
|
||
|
||
<br/>2022-04-03
|
||
</div>
|
||
|
||
<div class="d-article">
|
||
<h2 id="gathering-data">Gathering Data</h2>
|
||
<p>To get started on the project before any scans of the actual debris are made available, I opted to find 3D models online and process them as if they were data collected by my team. GrabCAD is an excellent source of high-quality 3D models, and all of the models have, at worst, a non-commercial license making them suitable for this study. The current dataset uses three separate satellite assemblies found on GrabCAD, below is an example of one of the satellites that was used.</p>
|
||
<figure>
|
||
<img src="Figures/assembly.jpg" alt="Example CubeSat Used for Analysis" /><figcaption aria-hidden="true">Example CubeSat Used for Analysis</figcaption>
|
||
</figure>
|
||
<h2 id="data-preparation">Data Preparation</h2>
|
||
<p>The models were processed in Blender, which quickly converted the assemblies to <code>stl</code> files, giving 108 unique parts to be processed. Since the expected final size of the dataset is expected to be in the magnitude of the thousands, an algorithm capable of getting the required properties of each part is the only feasible solution. From the analysis performed in <a href="https://gitlab.com/orbital-debris-research/directed-study/report-1/-/blob/main/README.md">Report 1</a>, we know that the essential debris property is the moments of inertia which helped narrow down potential algorithms. Unfortunately, this is one of the more complicated things to calculate from a mesh, but thanks to a paper from <span class="citation" data-cites="eberlyPolyhedralMassProperties2002">(<a href="#ref-eberlyPolyhedralMassProperties2002" role="doc-biblioref">Eberly 2002</a>)</span> titled <a href="https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf">Polyhedral Mass Properties</a>, his algorithm was able to be implemented in the Julia programming language. The current implementation of the algorithm calculates a moment of inertia tensor, volume, and center of gravity in a few milliseconds per part.</p>
|
||
<figure>
|
||
<img src="Figures/current_process.svg" alt="Current Process" /><figcaption aria-hidden="true">Current Process</figcaption>
|
||
</figure>
|
||
<p>The algorithm’s speed is critical not only for the eventually large number of debris pieces that have to be processed, but many of the data science algorithms we plan on performing on the compiled data need the data to be normalized. I have decided that it makes the most sense to normalize the dataset based on volume. I chose volume for a few reasons, namely because it was easy to implement an efficient algorithm to calculate volume, and currently, volume seems to be the least essential property for the data analysis. Unfortunately, scaling a model to have a specific volume is an iterative process, but can be done very efficiently using derivative-free numerical root-finding algorithms. The current implementation can scale and process all the properties using only 30% more time than getting the properties without first scaling.</p>
|
||
<div class="sourceCode" id="cb1"><pre class="sourceCode txt"><code class="sourceCode default"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a> Row │ variable mean min median max</span>
|
||
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a> │ Symbol Float64 Float64 Float64 Float64</span>
|
||
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>─────┼────────────────────────────────────────────────────────────</span>
|
||
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a> 1 │ volume 0.00977609 1.05875e-10 2.0558e-5 0.893002</span>
|
||
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> 2 │ cx -0.836477 -3.13272 -0.00135877 0.0866989</span>
|
||
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> 3 │ cy -1.52983 -5.07001 -0.101678 0.177574</span>
|
||
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> 4 │ cz 0.162855 -6.83716 0.00115068 7.60925</span>
|
||
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a> 5 │ Ix 0.00425039 -5.2943e-7 9.10038e-9 0.445278</span>
|
||
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> 6 │ Iy 0.0108781 1.05468e-17 1.13704e-8 1.14249</span>
|
||
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> 7 │ Iz 0.0111086 1.05596e-17 2.1906e-8 1.15363</span></code></pre></div>
|
||
<p>Above is a summary of the current 108 part dataset without scaling. The max values are well above the median, and given the dataset’s small size, there are still significant outliers in the dataset. For now, any significant outliers will be removed, with more explanation below, but hopefully, this will not become as necessary or shrink the dataset as much as the dataset grows. As mentioned before, a raw and a normalized dataset were prepared, and the data can be found below:</p>
|
||
<ul>
|
||
<li><a href="https://gitlab.com/orbital-debris-research/directed-study/report-2/-/blob/main/dataset.csv">dataset.csv</a></li>
|
||
<li><a href="https://gitlab.com/orbital-debris-research/directed-study/report-2/-/blob/main/scaled_dataset.csv">scaled_dataset.csv</a></li>
|
||
</ul>
|
||
<h2 id="characterization">Characterization</h2>
|
||
<p>The first step toward characterization is to perform a principal component analysis to determine the essential properties. In the past, moments of inertia have been the most important for capturing the variation in the data. However, since this dataset is significantly different from the previous one, it is essential to ensure inertia is still the most important. We begin by using the <code>pca</code> function in Matlab on our scaled dataset.</p>
|
||
<div class="sourceCode" id="cb2"><pre class="sourceCode matlab"><code class="sourceCode matlab"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>[<span class="va">coeff</span><span class="op">,</span><span class="va">score</span><span class="op">,</span><span class="va">latent</span>] <span class="op">=</span> <span class="va">pca</span>(<span class="va">scaled_data</span>)<span class="op">;</span></span></code></pre></div>
|
||
<p>We can then put the <code>coeff</code> and <code>score</code> returned by the <code>pca</code> function into a biplot to visualize what properties are the most important easily. Unfortunately, we exist in a 3D world, so the centers of gravity and moments of inertia have to be analyzed individually.</p>
|
||
<figure>
|
||
<img src="Figures/biplots.png" alt="3D BiPlots for PCA" /><figcaption aria-hidden="true">3D BiPlots for PCA</figcaption>
|
||
</figure>
|
||
<p>The components of all six properties are represented in each of the biplots by the blue lines, and the red dots represent the scores of each property for each part. The data variation is captured pretty well for the current dataset by both the inertia and the center of gravity. I will continue using inertia since it performed slightly better here and was the best when it was performed on just a single satellite. As the dataset grows and the model ingestion pipeline becomes more robust, more time will be spent analyzing the properties.</p>
|
||
<p>Now that it has been determined that inertia will be used, k-means clustering can be performed on the raw, unscaled dataset.</p>
|
||
<div class="sourceCode" id="cb3"><pre class="sourceCode matlab"><code class="sourceCode matlab"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>[<span class="va">IDX</span><span class="op">,</span> <span class="va">C</span>] <span class="op">=</span> <span class="va">kmeans</span>(<span class="va">inertia</span><span class="op">,</span><span class="fl">3</span>)<span class="op">;</span></span>
|
||
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
|
||
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="va">histcounts</span>(<span class="va">IDX</span>) <span class="co">% Get the size of each cluster</span></span>
|
||
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a> <span class="fl">89</span> <span class="fl">10</span> <span class="fl">8</span></span></code></pre></div>
|
||
<figure>
|
||
<img src="Figures/first_scatter.png" alt="Scatter of all Data" /><figcaption aria-hidden="true">Scatter of all Data</figcaption>
|
||
</figure>
|
||
<p>This data has four distinct groups, with much overlap in the larger groups. Therefore, to get a better view, only the smallest magnitude group will be kept since it seems to have the most variation and k-means will be performed again to understand the data better.</p>
|
||
<div class="sourceCode" id="cb4"><pre class="sourceCode matlab"><code class="sourceCode matlab"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="va">inertia</span> <span class="op">=</span> <span class="va">inertia</span>(<span class="va">IDX</span> <span class="op">==</span> <span class="fl">1</span><span class="op">,:</span>)<span class="op">;</span></span>
|
||
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>[<span class="va">IDX</span><span class="op">,</span> <span class="va">C</span>] <span class="op">=</span> <span class="va">kmeans</span>(<span class="va">inertia</span><span class="op">,</span><span class="fl">3</span>)<span class="op">;</span></span>
|
||
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a></span>
|
||
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="va">histcounts</span>(<span class="va">IDX</span>) <span class="co">% Get the size of each cluster</span></span>
|
||
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a> <span class="fl">76</span> <span class="fl">6</span> <span class="fl">7</span></span></code></pre></div>
|
||
<figure>
|
||
<img src="Figures/final_scatter.png" alt="Scatter of Smallest Group" /><figcaption aria-hidden="true">Scatter of Smallest Group</figcaption>
|
||
</figure>
|
||
<p>This brings the dataset down to 89 parts from the original 108 and still leaves some small clusters. This highlights the need to grow the dataset by around 10x so that, hopefully, there will not be so many small, highly localized clusters.</p>
|
||
<h2 id="next-steps">Next Steps</h2>
|
||
<p>The current dataset needs to be grown in both the amount of data and the variety of data. The most glaring issue with the current dataset is the lack of any debris since the parts are straight from satellite assemblies. Getting accurate properties from the current scans we have is an entire research project in itself, so hopefully, getting pieces that are easier to scan can help bring the project back on track. The other and harder-to-fix issue is finding/deriving more data properties. Properties such as cross-sectional or aerodynamic drag would be very insightful but are likely to be difficult to implement in code and significantly more resource intensive than the current properties the code can derive. Characteristic length is being used heavily by NASA Debrisat and seems straightforward to implement so that will be the next goal for the mesh processing code. Before the next report, I would like to see this dataset grow closer to one thousand pieces.</p>
|
||
<div class="sourceCode" id="cb5"><pre class="sourceCode r distill-force-highlighting-css"><code class="sourceCode r"></code></pre></div>
|
||
<div id="refs" class="references csl-bib-body hanging-indent" role="doc-bibliography">
|
||
<div id="ref-eberlyPolyhedralMassProperties2002" class="csl-entry" role="doc-biblioentry">
|
||
Eberly, David. 2002. <span>“Polyhedral <span>Mass Properties</span> (<span>Revisited</span>).”</span> <a href="https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf">https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf</a>.
|
||
</div>
|
||
</div>
|
||
<!--radix_placeholder_article_footer-->
|
||
<!--/radix_placeholder_article_footer-->
|
||
</div>
|
||
|
||
<div class="d-appendix">
|
||
</div>
|
||
|
||
|
||
<!--radix_placeholder_site_after_body-->
|
||
<!--/radix_placeholder_site_after_body-->
|
||
<!--radix_placeholder_appendices-->
|
||
<div class="appendix-bottom">
|
||
<h3 id="references">References</h3>
|
||
<div id="references-listing"></div>
|
||
<h3 id="updates-and-corrections">Corrections</h3>
|
||
<p>If you see mistakes or want to suggest changes, please <a href="https://gitlab.com/orbital-debris-research/directed-study/report-2">create an issue</a> on the source repository.</p>
|
||
</div>
|
||
<!--/radix_placeholder_appendices-->
|
||
<!--radix_placeholder_navigation_after_body-->
|
||
<!--/radix_placeholder_navigation_after_body-->
|
||
|
||
</body>
|
||
|
||
</html>
|