mirror of
https://gitlab.com/triple-hops-brewed/raspberry-pi-stock-ticker.git
synced 2025-06-15 14:56:38 +00:00
143 lines
4.1 KiB
Python
143 lines
4.1 KiB
Python
import sys
|
|
import time
|
|
from math import ceil
|
|
|
|
import numpy as np
|
|
import requests
|
|
from bdfparse import Font
|
|
|
|
from keys import IEX_TOKEN
|
|
from rgbmatrix import RGBMatrix, RGBMatrixOptions, graphics
|
|
|
|
font_file = "matrix\\fonts\\9x15.bdf"
|
|
font = Font(font_file)
|
|
matrix_shape = (16, 32) # rows, cols
|
|
symbols = ["tsla", "psec", "aapl"]
|
|
|
|
|
|
options = RGBMatrixOptions()
|
|
options.chain_length = 1
|
|
options.parallel = 1
|
|
options.hardware_mapping = "regular"
|
|
options.rows, options.cols = matrix_shape
|
|
|
|
|
|
red = (255, 51, 51)
|
|
green = (51, 255, 51)
|
|
white = (255, 255, 255)
|
|
blank = np.zeros((matrix_shape[0], matrix_shape[1], 3))
|
|
|
|
|
|
def stockMatrix(symbols: list, matrix=blank):
|
|
array = blank
|
|
for symbol in symbols:
|
|
message, color = symbolData(symbol)
|
|
mess_arr = matrix_message(message, color, matrix_shape[0])
|
|
|
|
array = np.concatenate((array, mess_arr), axis=1)
|
|
return array
|
|
|
|
|
|
def symbolData(symbol: str):
|
|
"""
|
|
Takes a list of symbol and returns a dictionary of strings with information about the symbol.
|
|
"""
|
|
IEXurl = "https://cloud.iexapis.com/stable/stock/{symbol}/quote?token={IEX}".format(
|
|
symbol=symbol, IEX=IEX_TOKEN
|
|
)
|
|
|
|
response = requests.get(IEXurl)
|
|
if response.status_code is 200:
|
|
IEXData = response.json()
|
|
message = "The current stock price of {name} is {price}".format(
|
|
name=IEXData["companyName"], price=IEXData["latestPrice"]
|
|
)
|
|
|
|
# Determine wording of change text
|
|
change = round(IEXData["changePercent"] * 100, 2)
|
|
if change > 0:
|
|
message += ", the stock is currently up {change}% ".format(change=change)
|
|
color = green
|
|
elif change < 0:
|
|
message += ", the stock is currently down {change}% ".format(change=change)
|
|
color = red
|
|
else:
|
|
message += ", the stock hasn't shown any movement today."
|
|
color = white
|
|
else:
|
|
message = "The symbol: {symbol} was not found. ".format(symbol=symbol)
|
|
color = white
|
|
|
|
return (message, color)
|
|
|
|
|
|
def matrix_message(message, color, rows):
|
|
message_arr = fit_array(font.word(message), rows)
|
|
|
|
r = np.multiply(np.full(message_arr.shape, color[0]), message_arr)
|
|
g = np.multiply(np.full(message_arr.shape, color[1]), message_arr)
|
|
b = np.multiply(np.full(message_arr.shape, color[2]), message_arr)
|
|
|
|
array = np.zeros((message_arr.shape[0], message_arr.shape[1], 3), dtype=int)
|
|
array[:, :, 0] = np.add(array[:, :, 0], r)
|
|
array[:, :, 1] = np.add(array[:, :, 1], g)
|
|
array[:, :, 2] = np.add(array[:, :, 2], b)
|
|
|
|
return array
|
|
|
|
|
|
def fit_array(array, rows, operation="centered", fill_value=0):
|
|
rows = rows - array.shape[0]
|
|
cols = array.shape[1]
|
|
offset = (rows, cols)
|
|
|
|
if operation is "centered":
|
|
top = ceil(rows / 2)
|
|
top_fill = np.full((top, cols), fill_value)
|
|
|
|
bottom = rows // 2
|
|
bottom_fill = np.full((bottom, cols), fill_value)
|
|
return np.concatenate((top_fill, array, bottom_fill), axis=0)
|
|
|
|
elif operation is "top":
|
|
fill = np.full(offset, fill_value)
|
|
return np.concatenate((fill, array), axis=0)
|
|
|
|
elif operation is "bottom":
|
|
fill = np.full(offset, fill_value)
|
|
return np.concatenate((array, fill), axis=0)
|
|
|
|
else:
|
|
raise Exception("Invalid Operation. Must be either centered, top, or bottom.")
|
|
|
|
|
|
def run(matrix_message):
|
|
matrix = RGBMatrix(options=options)
|
|
canvas = matrix.CreateFrameCanvas()
|
|
|
|
for row in range(matrix_shape[0]):
|
|
for col in range(matrix_shape[1]):
|
|
r = matrix_message[row, col, 0]
|
|
g = matrix_message[row, col, 1]
|
|
b = matrix_message[row, col, 2]
|
|
canvas.SetPixel(row, col, r, g, b)
|
|
|
|
canvas = matrix.SwapOnVSync(canvas)
|
|
time.sleep(1)
|
|
|
|
|
|
try:
|
|
print("Press CTRL-C to stop.")
|
|
|
|
matrix = stockMatrix(symbols)
|
|
while True:
|
|
run(matrix)
|
|
matrix = matrix[:, 1:, :]
|
|
if matrix.shape[1] < matrix_shape[1]:
|
|
new_matrix = stockMatrix(symbols)
|
|
matrix = np.concatenate((matrix, new_matrix), axis=1)
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
sys.exit(0)
|