Report-1/prep/prep.jl

60 lines
1.2 KiB
Julia

using DataFrames
using LinearAlgebra
using CSV
using DataFramesMeta
using Plots
using StatsPlots
begin
df = CSV.read("compiled.csv", DataFrame)
df.bb_volume = df.bb_length .* df.bb_width .* df.bb_height
@eachrow! df begin
@newcol :Ix::Vector{Float64}
@newcol :Iy::Vector{Float64}
@newcol :Iz::Vector{Float64}
@newcol :Ibar::Vector{Float64}
I = [
:Ixx :Ixy :Ixz
:Iyx :Iyy :Iyz
:Izx :Izy :Izz
]
(:Ix, :Iy, :Iz) = eigvals(I)
:Ibar = :Ix^2 + :Iy^2 + :Iz^2 |> sqrt
end
# Convert material to scalar
begin
kv = Dict(reverse.(enumerate(Set(df.material_name))))
mats = []
for material in df.material_name
push!(mats, kv[material])
end
df.material_index = mats
end
# Remove columns not needed for analysis
df = df[!, [:mass, :volume, :density, :area, :bb_volume, :Ibar]]
# Remove outliers
df = df[df.bb_volume.<1e6, :]
df = df[df.mass.<1000, :]
end
@df df cornerplot(cols(1:4), compact = true)
# plot(df.mass)
# histogram(df.mass)
scatter(df.mass, df.volume)
CSV.write("prepped.csv", df)