1
0
mirror of https://gitlab.com/MisterBiggs/SADC.jl.git synced 2025-07-27 16:41:32 +00:00
Files
SADC.jl/SADC.jl
2021-08-03 22:34:30 -07:00

92 lines
1.5 KiB
Julia

using LinearAlgebra
using NumericalIntegration
using ProgressBars
include("Quaternions.jl")
dt = 0.005
time = 0.0:dt:60
I = [3 0 0; 0 4 0; 0 0 2]
Iinv = inv(I)
T = [0; 0; 0]
ω = [2.001; 0.001; 0.001]
ω′ = [0; 0; 0]
q = Quaternion([0; 0; 0; 1])
ω_last = [0; 0; 0; ω]
ω0 = copy(ω_last)
ω_area = [0; 0; 0; 0; 0; 0]
β = [0; 0; 0]
integrate_ω(T, I, ω) = Iinv * (T - cross(ω, I * ω))
function q_step(β)
mag = β .^ 2 |> sum |> sqrt
Quaternion([normalize(β) .* sin(mag / 2); cos(mag / 2)])
end
function integrate_vector(v, v_last)
v_new = similar(v)
for i = 1:length(v)
v_new[i] = integrate([0, dt], [v_last[i], v[i]])
end
return v_new
end
qs = []
for t in ProgressBar(time)
# t = collect(time)[1]
ω′ = integrate_ω(T, I, ω)
ω_new = integrate_vector([ω; ω′], ω_last)
β = ω_new[1:3] .- β
ω_last = [ω; ω′]
ω = ω_new[4:6] .- ω
ω_area = ω_new .+ ω_area
q = q * q_step(β)
push!(qs, q)
end
# Plot
using Plots
let
plot(title = "T Handle Quaternion")
plot!([q[1] for q in qs], label = "i")
plot!([q[2] for q in qs], label = "j")
plot!([q[3] for q in qs], label = "k")
plot!([q[4] for q in qs], label = "r")
end
# println("done")
# plot(qs)
# Write to CSV
# using CSV
# using DataFrames
# ts = 100
# df = DataFrame(
# time = time[1:ts:end],
# yaw = yaw[1:ts:end],
# roll = roll[1:ts:end],
# pitch = pitch[1:ts:end],
# )
# CSV.write("ypr.csv", df, header = false)
# df