1
0
mirror of https://gitlab.com/MisterBiggs/stl-process.git synced 2025-08-03 12:01:33 +00:00

Solid body dims

This commit is contained in:
2022-04-15 02:54:29 +00:00
parent 33ad462021
commit dd417fec64
3 changed files with 33 additions and 25 deletions

View File

@@ -1,7 +1,7 @@
name = "stlProcess" name = "stlProcess"
uuid = "68914fc9-42cf-4b37-b06f-0b65edf9b8fa" uuid = "68914fc9-42cf-4b37-b06f-0b65edf9b8fa"
authors = ["Anson <anson@ansonbiggs.com>"] authors = ["Anson <anson@ansonbiggs.com>"]
version = "0.2.1" version = "0.2.2"
[deps] [deps]
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"

View File

@@ -11,12 +11,14 @@ struct Properties
inertia::Matrix{Float64} inertia::Matrix{Float64}
surface_area::Float64 surface_area::Float64
characteristic_length::Float64 characteristic_length::Float64
sb_values::Vector{Float64}
function Properties(volume, center_of_gravity, inertia, surface_area, characteristic_length) function Properties(volume, center_of_gravity, inertia, surface_area, characteristic_length, sb_values)
@assert size(center_of_gravity) == (3,) @assert size(center_of_gravity) == (3,)
@assert size(sb_values) == (3,)
@assert size(inertia) == (3, 3) @assert size(inertia) == (3, 3)
return new(volume, center_of_gravity, inertia, surface_area, characteristic_length) return new(volume, center_of_gravity, inertia, surface_area, characteristic_length, sb_values)
end end
end end
@@ -29,6 +31,7 @@ function get_mass_properties(triangles; scale=1.0)
x = reduce(hcat, [[v[1] .* scale for v in tri] for tri in triangles])' x = reduce(hcat, [[v[1] .* scale for v in tri] for tri in triangles])'
y = reduce(hcat, [[v[2] .* scale for v in tri] for tri in triangles])' y = reduce(hcat, [[v[2] .* scale for v in tri] for tri in triangles])'
z = reduce(hcat, [[v[3] .* scale for v in tri] for tri in triangles])' z = reduce(hcat, [[v[3] .* scale for v in tri] for tri in triangles])'
points = collect(Set(reduce(vcat, [[Array(Float64.(v)) .* scale for v in tri] for tri in triangles])))
function subexpression(x) function subexpression(x)
w0, w1, w2 = x[:, 1], x[:, 2], x[:, 3] w0, w1, w2 = x[:, 1], x[:, 2], x[:, 3]
@@ -76,16 +79,29 @@ function get_mass_properties(triangles; scale=1.0)
inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume .* center_of_gravity[1] .* center_of_gravity[2]) inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume .* center_of_gravity[1] .* center_of_gravity[2])
inertia[2, 3] = inertia[3, 2] = -(intg[9] - volume .* center_of_gravity[2] .* center_of_gravity[3]) inertia[2, 3] = inertia[3, 2] = -(intg[9] - volume .* center_of_gravity[2] .* center_of_gravity[3])
inertia[1, 3] = inertia[3, 1] = -(intg[10] - volume .* center_of_gravity[3] .* center_of_gravity[1]) inertia[1, 3] = inertia[3, 1] = -(intg[10] - volume .* center_of_gravity[3] .* center_of_gravity[1])
inertia = inertia / volume
# https://math.stackexchange.com/questions/128991/how-to-calculate-the-area-of-a-3d-triangle # https://math.stackexchange.com/questions/128991/how-to-calculate-the-area-of-a-3d-triangle
surface_area = sum(norm.(eachrow([x0 y0 z0] - [x1 y1 z1]) .× eachrow([x1 y1 z1] - [x2 y2 z2])) / 2) surface_area = sum(norm.(eachrow([x0 y0 z0] - [x1 y1 z1]) .× eachrow([x1 y1 z1] - [x2 y2 z2])) / 2)
characteristic_length = calc_characteristic_length(triangles, inertia, center_of_gravity, scale) characteristic_length = calc_characteristic_length(points, inertia, center_of_gravity)
return Properties(volume, center_of_gravity, inertia ./ volume, surface_area, characteristic_length) sb_values = solid_body(points)
return Properties(volume, center_of_gravity, inertia, surface_area, characteristic_length, sb_values)
end end
function calc_characteristic_length(triangles, inertia, center_of_gravity, scale; θtol=0.1) function solid_body(points)
pts = reduce(hcat, points)
Xsb = abs(reduce(-, extrema(@view pts[1, :])))
Ysb = abs(reduce(-, extrema(@view pts[2, :])))
Zsb = abs(reduce(-, extrema(@view pts[3, :])))
return [Xsb, Ysb, Zsb]
end
function calc_characteristic_length(points, inertia, center_of_gravity)
""" """
Calculate the Characteristic Length using eigenvectors. Calculate the Characteristic Length using eigenvectors.
@@ -93,27 +109,17 @@ function calc_characteristic_length(triangles, inertia, center_of_gravity, scale
More information on the geometry used: https://math.stackexchange.com/q/100447 More information on the geometry used: https://math.stackexchange.com/q/100447
""" """
eigs = eigvecs(inertia)
points = collect(Set(reduce(vcat, [[Array(Float64.(v)) .* scale for v in tri] for tri in triangles])))
function θs_calc(ref, points)
"""
Calculates the angle between a reference vector and an array of points.
"""
norm_ref = norm(ref)
return map(
pt ->
acos(clamp(dot(ref, pt .- center_of_gravity) / (norm(pt .- center_of_gravity) * norm_ref), -1.0, 1.0)),
points,
)
end
characteristic_points = [] characteristic_points = []
# find the characteristic points for each eigenvector # find the characteristic points for each eigenvector
for eig in eachrow(eigs) for eig in eachrow(eigvecs(inertia))
# Find 3 points for each direction of the eigenvector # Find 3 points for each direction of the eigenvector
θs = θs_calc(eig, points) θs = map(
point -> acos(
clamp(dot(eig, point .- center_of_gravity) / (norm(point .- center_of_gravity) * norm(eig)), -1.0, 1.0),
),
points,
)
sort_index = sortperm(θs) sort_index = sortperm(θs)
min_points = points[sort_index[1:3]] min_points = points[sort_index[1:3]]
max_points = points[sort_index[(end - 2):end]] max_points = points[sort_index[(end - 2):end]]

View File

@@ -53,14 +53,15 @@ end
models = Dict( models = Dict(
# Inertia math: https://en.wikipedia.org/wiki/List_of_moments_of_inertia#List_of_3D_inertia_tensors # Inertia math: https://en.wikipedia.org/wiki/List_of_moments_of_inertia#List_of_3D_inertia_tensors
# Properties(volume, center_of_gravity, inertia, surface_area, characteristic_length) # Properties(volume, center_of_gravity, inertia, surface_area, characteristic_length)
"cube.stl" => Properties(2.0^3, center, I_mat .* 2^2 / 6, 6 * 2^2, 2), # l = 2 "cube.stl" => Properties(2.0^3, center, I_mat .* 2^2 / 6, 6 * 2^2, 2, [2, 2, 2]), # l = 2
"sphere.stl" => Properties(4 / 3 * pi, center, I_mat .* 2 / 5, 4π, 2), # r = 1 "sphere.stl" => Properties(4 / 3 * pi, center, I_mat .* 2 / 5, 4π, 2, [2, 2, 2]), # r = 1
"2_4_8_cuboid.stl" => Properties( "2_4_8_cuboid.stl" => Properties(
2 * 4 * 8, 2 * 4 * 8,
center, center,
diagm([2^2 + 4^2, 8^2 + 2^2, 8^2 + 4^2]) ./ 12, diagm([2^2 + 4^2, 8^2 + 2^2, 8^2 + 4^2]) ./ 12,
2(2 * 4 + 2 * 8 + 4 * 8), 2(2 * 4 + 2 * 8 + 4 * 8),
(2 + 4 + 8) / 3, (2 + 4 + 8) / 3,
[2, 4, 8],
), # h, d, w = 2, 4, 8 ), # h, d, w = 2, 4, 8
# "slender_y.stl" => Properties( # "slender_y.stl" => Properties(
# 10 * π * 0.1^2, # 10 * π * 0.1^2,
@@ -89,6 +90,7 @@ end
@test eigvals(props.inertia) eigvals(control.inertia) atol = 0.1 @test eigvals(props.inertia) eigvals(control.inertia) atol = 0.1
@test props.surface_area control.surface_area atol = 0.5 @test props.surface_area control.surface_area atol = 0.5
@test props.characteristic_length control.characteristic_length atol = 0.5 @test props.characteristic_length control.characteristic_length atol = 0.5
@test props.sb_values control.sb_values atol = 0.01
end end
@testset "Compare volumes with scaling for $model" begin @testset "Compare volumes with scaling for $model" begin
for scale in 1:4 for scale in 1:4