1
0
mirror of https://gitlab.com/simple-stock-bots/simple-stock-bot.git synced 2025-07-22 06:01:40 +00:00

revert changes to master

This commit is contained in:
2023-09-03 12:02:45 -06:00
parent 4cf0330734
commit d6dd6f7353
13 changed files with 405 additions and 389 deletions

View File

@@ -1,263 +0,0 @@
import datetime as dt
import logging
import os
from typing import Dict
import pandas as pd
import pytz
import requests as r
import schedule
from common.Symbol import Stock
log = logging.getLogger(__name__)
class MarketData:
"""
Functions for finding stock market information about symbols from MarkData.app
"""
SYMBOL_REGEX = "[$]([a-zA-Z]{1,4})"
charts: Dict[Stock, pd.DataFrame] = {}
openTime = dt.time(hour=9, minute=30, second=0)
marketTimeZone = pytz.timezone("US/Eastern")
def __init__(self) -> None:
"""Creates a Symbol Object
Parameters
----------
MARKETDATA_TOKEN : str
MarketData.app API Token
"""
try:
self.MARKETDATA_TOKEN = os.environ["MARKETDATA"]
if self.MARKETDATA_TOKEN == "TOKEN":
self.MARKETDATA_TOKEN = ""
except KeyError:
self.MARKETDATA_TOKEN = ""
log.warning("Starting without an MarketData.app Token will not allow you to get market data!")
log.warning("Use this affiliate link so that the bot can stay free:")
log.warning("https://dashboard.marketdata.app/marketdata/aff/go/misterbiggs?keyword=repo")
if self.MARKETDATA_TOKEN != "":
schedule.every().day.do(self.clear_charts)
def get(self, endpoint, params: dict = {}, timeout=10) -> dict:
url = "https://api.marketdata.app/v1/" + endpoint
# set token param if it wasn't passed.
params["token"] = self.MARKETDATA_TOKEN
# Undocumented query variable that ensures bot usage can be
# monitored even if someone doesn't make it through an affiliate link.
params["application"] = "simplestockbot"
resp = r.get(url, params=params, timeout=timeout)
# Make sure API returned a proper status code
try:
resp.raise_for_status()
except r.exceptions.HTTPError as e:
logging.error(e)
return {}
# Make sure API returned valid JSON
try:
resp_json = resp.json()
match resp_json["s"]:
case "ok":
return resp_json
case "no_data":
return resp_json
case "error":
logging.error("MarketData Error:\n" + resp_json["errmsg"])
return {}
except r.exceptions.JSONDecodeError as e:
logging.error(e)
return {}
def clear_charts(self) -> None:
"""
Clears cache of chart data.
Charts are cached so that only 1 API call per 24 hours is needed since the
chart data is expensive and a large download.
"""
self.charts = {}
def status(self) -> str:
# TODO: At the moment this API is poorly documented, this function likely needs to be revisited later.
try:
status = r.get(
"https://stats.uptimerobot.com/api/getMonitorList/6Kv3zIow0A",
timeout=5,
)
status.raise_for_status()
except r.HTTPError:
return f"API returned an HTTP error code {status.status_code} in {status.elapsed.total_seconds()} Seconds."
except r.Timeout:
return "API timed out before it was able to give status. This is likely due to a surge in usage or a complete outage."
statusJSON = status.json()
if statusJSON["status"] == "ok":
return (
f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} Seconds."
)
else:
return f"MarketData.app is currently reporting the following status: {statusJSON['status']}"
def price_reply(self, symbol: Stock) -> str:
"""Returns price movement of Stock for the last market day, or after hours.
Parameters
----------
symbol : Stock
Returns
-------
str
Formatted markdown
"""
if quoteResp := self.get(f"stocks/quotes/{symbol}/"):
price = round(quoteResp["last"][0], 2)
changePercent = round(quoteResp["changepct"][0], 2)
message = f"The current price of {symbol.name} is ${price} and "
if changePercent > 0.0:
message += f"is currently up {changePercent}% for the day."
elif changePercent < 0.0:
message += f"is currently down {changePercent}% for the day."
else:
message += "hasn't shown any movement for the day."
return message
else:
return f"Getting a quote for {symbol} encountered an error."
def spark_reply(self, symbol: Stock) -> str:
if quoteResp := self.get(f"stocks/quotes/{symbol}/"):
changePercent = round(quoteResp["changepct"][0], 2)
return f"`{symbol.tag}`: {changePercent}%"
else:
logging.warning(f"{symbol} did not have 'changepct' field.")
return f"`{symbol.tag}`"
def intra_reply(self, symbol: Stock) -> pd.DataFrame:
"""Returns price data for a symbol of the past month up until the previous trading days close.
Also caches multiple requests made in the same day.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
"""
schedule.run_pending()
try:
return self.charts[symbol.id.upper()]
except KeyError:
pass
resolution = "15" # minutes
now = dt.datetime.now(self.marketTimeZone)
if self.openTime < now.time():
startTime = now.replace(hour=9, minute=30)
else:
startTime = now - dt.timedelta(days=1)
if data := self.get(
f"stocks/candles/{resolution}/{symbol}",
params={"from": startTime.timestamp(), "to": now.timestamp(), "extended": True},
):
data.pop("s")
df = pd.DataFrame(data)
df["t"] = pd.to_datetime(df["t"], unit="s", utc=True)
df.set_index("t", inplace=True)
df.rename(
columns={
"o": "Open",
"h": "High",
"l": "Low",
"c": "Close",
"v": "Volume",
},
inplace=True,
)
self.charts[symbol.id.upper()] = df
return df
return pd.DataFrame()
def chart_reply(self, symbol: Stock) -> pd.DataFrame:
"""Returns price data for a symbol of the past month up until the previous trading days close.
Also caches multiple requests made in the same day.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
"""
schedule.run_pending()
try:
return self.charts[symbol.id.upper()]
except KeyError:
pass
to_date = dt.datetime.today().strftime("%Y-%m-%d")
from_date = (dt.datetime.today() - dt.timedelta(days=30)).strftime("%Y-%m-%d")
resultion = "daily"
if data := self.get(
f"stocks/candles/{resultion}/{symbol}",
params={
"from": from_date,
"to": to_date,
},
):
data.pop("s")
df = pd.DataFrame(data)
df["t"] = pd.to_datetime(df["t"], unit="s")
df.set_index("t", inplace=True)
df.rename(
columns={
"o": "Open",
"h": "High",
"l": "Low",
"c": "Close",
"v": "Volume",
},
inplace=True,
)
self.charts[symbol.id.upper()] = df
return df
return pd.DataFrame()

View File

@@ -1,50 +0,0 @@
import pandas as pd
import logging
class Symbol:
"""
symbol: What the user calls it. ie tsla or btc
id: What the api expects. ie tsla or bitcoin
name: Human readable. ie Tesla or Bitcoin
tag: Uppercase tag to call the symbol. ie $TSLA or $$BTC
"""
currency = "usd"
pass
def __init__(self, symbol) -> None:
self.symbol = symbol
self.id = symbol
self.name = symbol
self.tag = "$" + symbol
def __repr__(self) -> str:
return f"<{self.__class__.__name__} instance of {self.id} at {id(self)}>"
def __str__(self) -> str:
return self.id
class Stock(Symbol):
"""Stock Market Object. Gets data from MarketData"""
def __init__(self, symbol: str) -> None:
self.symbol = symbol
self.id = symbol
self.name = "$" + symbol.upper()
self.tag = "$" + symbol.lower()
class Coin(Symbol):
"""Cryptocurrency Object. Gets data from CoinGecko."""
def __init__(self, symbol: pd.DataFrame) -> None:
if len(symbol) > 1:
logging.info(f"Crypto with shared id:\n\t{symbol.id}")
symbol = symbol.head(1)
self.symbol = symbol.symbol.values[0]
self.id = symbol.id.values[0]
self.name = symbol.name.values[0]
self.tag = symbol.type_id.values[0].upper()

View File

@@ -1,367 +0,0 @@
import logging
from typing import List
import pandas as pd
import requests as r
import schedule
from markdownify import markdownify
from common.Symbol import Coin
log = logging.getLogger(__name__)
class cg_Crypto:
"""
Functions for finding crypto info
"""
vs_currency = "usd" # simple/supported_vs_currencies for list of options
trending_cache: List[str] = []
def __init__(self) -> None:
self.get_symbol_list()
schedule.every().day.do(self.get_symbol_list)
def get(self, endpoint, params: dict = {}, timeout=10) -> dict:
url = "https://api.coingecko.com/api/v3" + endpoint
resp = r.get(url, params=params, timeout=timeout)
# Make sure API returned a proper status code
try:
resp.raise_for_status()
except r.exceptions.HTTPError as e:
log.error(e)
return {}
# Make sure API returned valid JSON
try:
resp_json = resp.json()
return resp_json
except r.exceptions.JSONDecodeError as e:
log.error(e)
return {}
def symbol_id(self, symbol) -> str:
try:
return self.symbol_list[self.symbol_list["symbol"] == symbol]["id"].values[0]
except KeyError:
return ""
def get_symbol_list(self):
raw_symbols = self.get("/coins/list")
symbols = pd.DataFrame(data=raw_symbols)
# Removes all binance-peg symbols
symbols = symbols[~symbols["id"].str.contains("binance-peg")]
symbols["description"] = "$$" + symbols["symbol"].str.upper() + ": " + symbols["name"]
symbols = symbols[["id", "symbol", "name", "description"]]
symbols["type_id"] = "$$" + symbols["symbol"]
self.symbol_list = symbols
def status(self) -> str:
"""Checks CoinGecko /ping endpoint for API issues.
Returns
-------
str
Human readable text on status of CoinGecko API
"""
status = r.get(
"https://api.coingecko.com/api/v3/ping",
timeout=5,
)
try:
status.raise_for_status()
return (
f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} Seconds."
)
except r.HTTPError:
return f"CoinGecko API returned an error code {status.status_code} in {status.elapsed.total_seconds()} Seconds."
def price_reply(self, coin: Coin) -> str:
"""Returns current market price or after hours if its available for a given coin symbol.
Parameters
----------
symbols : list
List of coin symbols.
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable
markdown formatted string of the symbols price and movement.
"""
if resp := self.get(
"/simple/price",
params={
"ids": coin.id,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
):
try:
data = resp[coin.id]
price = data[self.vs_currency]
change = data[self.vs_currency + "_24h_change"]
if change is None:
change = 0
except KeyError:
return f"{coin.id} returned an error."
message = f"The current price of {coin.name} is $**{price:,}**"
# Determine wording of change text
if change > 0:
message += f", the coin is currently **up {change:.3f}%** for today"
elif change < 0:
message += f", the coin is currently **down {change:.3f}%** for today"
else:
message += ", the coin hasn't shown any movement today."
else:
message = f"The price for {coin.name} is not available. If you suspect this is an error run `/status`"
return message
def intra_reply(self, symbol: Coin) -> pd.DataFrame:
"""Returns price data for a symbol since the last market open.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
"""
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 1},
):
df = pd.DataFrame(resp, columns=["Date", "Open", "High", "Low", "Close"]).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame()
def chart_reply(self, symbol: Coin) -> pd.DataFrame:
"""Returns price data for a symbol of the past month up until the previous trading days close.
Also caches multiple requests made in the same day.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
"""
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 30},
):
df = pd.DataFrame(resp, columns=["Date", "Open", "High", "Low", "Close"]).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame()
def stat_reply(self, symbol: Coin) -> str:
"""Gathers key statistics on coin. Mostly just CoinGecko scores.
Parameters
----------
symbol : Coin
Returns
-------
str
Preformatted markdown.
"""
if data := self.get(
f"/coins/{symbol.id}",
params={
"localization": "false",
},
):
return f"""
[{data['name']}]({data['links']['homepage'][0]}) Statistics:
Market Cap: ${data['market_data']['market_cap'][self.vs_currency]:,}
Market Cap Ranking: {data.get('market_cap_rank',"Not Available")}
CoinGecko Scores:
Overall: {data.get('coingecko_score','Not Available')}
Development: {data.get('developer_score','Not Available')}
Community: {data.get('community_score','Not Available')}
Public Interest: {data.get('public_interest_score','Not Available')}
"""
else:
return f"{symbol.symbol} returned an error."
def cap_reply(self, coin: Coin) -> str:
"""Gets market cap for Coin
Parameters
----------
coin : Coin
Returns
-------
str
Preformatted markdown.
"""
if resp := self.get(
"/simple/price",
params={
"ids": coin.id,
"vs_currencies": self.vs_currency,
"include_market_cap": "true",
},
):
log.debug(resp)
try:
data = resp[coin.id]
price = data[self.vs_currency]
cap = data[self.vs_currency + "_market_cap"]
except KeyError:
return f"{coin.id} returned an error."
if cap == 0:
return f"The market cap for {coin.name} is not available for unknown reasons."
message = (
f"The current price of {coin.name} is $**{price:,}** and"
+ " its market cap is $**{cap:,.2f}** {self.vs_currency.upper()}"
)
else:
message = f"The Coin: {coin.name} was not found or returned and error."
return message
def info_reply(self, symbol: Coin) -> str:
"""Gets coin description
Parameters
----------
symbol : Coin
Returns
-------
str
Preformatted markdown.
"""
if data := self.get(
f"/coins/{symbol.id}",
params={"localization": "false"},
):
try:
return markdownify(data["description"]["en"])
except KeyError:
return f"{symbol} does not have a description available."
return f"No information found for: {symbol}\nEither today is boring or the symbol does not exist."
def spark_reply(self, symbol: Coin) -> str:
change = self.get(
"/simple/price",
params={
"ids": symbol.id,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)[symbol.id]["usd_24h_change"]
return f"`{symbol.tag}`: {symbol.name}, {change:.2f}%"
def trending(self) -> list[str]:
"""Gets current coins trending on coingecko
Returns
-------
list[str]
list of $$ID: NAME, CHANGE%
"""
coins = self.get("/search/trending")
try:
trending = []
for coin in coins["coins"]:
c = coin["item"]
sym = c["symbol"].upper()
name = c["name"]
change = self.get(
"/simple/price",
params={
"ids": c["id"],
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)[c["id"]]["usd_24h_change"]
msg = f"`$${sym}`: {name}, {change:.2f}%"
trending.append(msg)
except Exception as e:
log.warning(e)
return self.trending_cache
self.trending_cache = trending
return trending
def batch_price(self, coins: list[Coin]) -> list[str]:
"""Gets price of a list of coins all in one API call
Parameters
----------
coins : list[Coin]
Returns
-------
list[str]
returns preformatted list of strings detailing price movement of each coin passed in.
"""
query = ",".join([c.id for c in coins])
prices = self.get(
"/simple/price",
params={
"ids": query,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)
replies = []
for coin in coins:
if coin.id in prices:
p = prices[coin.id]
if p.get("usd_24h_change") is None:
p["usd_24h_change"] = 0
replies.append(
f"{coin.name}: ${p.get('usd',0):,} and has moved {p.get('usd_24h_change',0.0):.2f}% in the past 24 hours."
)
return replies

View File

@@ -1,393 +0,0 @@
"""Function that routes symbols to the correct API provider.
"""
import datetime
import logging
import random
import re
import pandas as pd
import schedule
from cachetools import TTLCache, cached
from common.cg_Crypto import cg_Crypto
from common.MarketData import MarketData
from common.Symbol import Coin, Stock, Symbol
from typing import Dict
log = logging.getLogger(__name__)
class Router:
STOCK_REGEX = "(?:^|[^\\$])\\$([a-zA-Z.]{1,6})"
CRYPTO_REGEX = "[$]{2}([a-zA-Z]{1,20})"
trending_count: Dict[str, float] = {}
def __init__(self):
self.stock = MarketData()
self.crypto = cg_Crypto()
schedule.every().hour.do(self.trending_decay)
def trending_decay(self, decay=0.5):
"""Decays the value of each trending stock by a multiplier"""
t_copy = {}
dead_keys = []
if self.trending_count:
t_copy = self.trending_count.copy()
for key in t_copy.keys():
if t_copy[key] < 0.01:
# This just makes sure were not keeping around keys that havent been called in a very long time.
dead_keys.append(key)
else:
t_copy[key] = t_copy[key] * decay
for dead in dead_keys:
t_copy.pop(dead)
self.trending_count = t_copy.copy()
log.info("Decayed trending symbols.")
def find_symbols(self, text: str, *, trending_weight: int = 1) -> list[Stock | Symbol]:
"""Finds stock tickers starting with a dollar sign, and cryptocurrencies with two dollar signs
in a blob of text and returns them in a list.
Parameters
----------
text : str
Blob of text.
Returns
-------
list[Symbol]
List of stock symbols as Symbol objects
"""
schedule.run_pending()
symbols: list[Symbol] = []
stocks = set(re.findall(self.STOCK_REGEX, text))
for stock in stocks:
# Market data lacks tools to check if a symbol is valid.
symbols.append(Stock(stock))
coins = set(re.findall(self.CRYPTO_REGEX, text))
for coin in coins:
sym = self.crypto.symbol_list[self.crypto.symbol_list["symbol"].str.fullmatch(coin.lower(), case=False)]
if sym.empty:
log.info(f"{coin} is not in list of coins")
else:
symbols.append(Coin(sym))
if symbols:
for symbol in symbols:
self.trending_count[symbol.tag] = self.trending_count.get(symbol.tag, 0) + trending_weight
log.debug(self.trending_count)
return symbols
def status(self, bot_resp) -> str:
"""Checks for any issues with APIs.
Returns
-------
str
Human readable text on status of the bot and relevant APIs
"""
stats = f"""
Bot Status:
{bot_resp}
Stock Market Data:
{self.stock.status()}
Cryptocurrency Data:
{self.crypto.status()}
"""
log.warning(stats)
return stats
def inline_search(self, search: str, matches: int = 5) -> pd.DataFrame:
"""Searches based on the shortest symbol that contains the same string as the search.
Should be very fast compared to a fuzzy search.
Parameters
----------
search : str
String used to match against symbols.
Returns
-------
list[tuple[str, str]]
Each tuple contains: (Symbol, Issue Name).
"""
df = pd.concat([self.stock.symbol_list, self.crypto.symbol_list])
df = df[df["description"].str.contains(search, regex=False, case=False)].sort_values(
by="type_id", key=lambda x: x.str.len()
)
symbols = df.head(matches)
symbols["price_reply"] = symbols["type_id"].apply(
lambda sym: self.price_reply(self.find_symbols(sym, trending_weight=0))[0]
)
return symbols
def price_reply(self, symbols: list[Symbol]) -> list[str]:
"""Returns current market price or after hours if its available for a given stock symbol.
Parameters
----------
symbols : list
List of stock symbols.
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable
markdown formatted string of the symbols price and movement.
"""
replies = []
for symbol in symbols:
log.info(symbol)
if isinstance(symbol, Stock):
replies.append(self.stock.price_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.price_reply(symbol))
else:
log.info(f"{symbol} is not a Stock or Coin")
return replies
def info_reply(self, symbols: list) -> list[str]:
"""Gets information on stock symbols.
Parameters
----------
symbols : list[str]
List of stock symbols.
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable formatted
string of the symbols information.
"""
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.info_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.info_reply(symbol))
else:
log.debug(f"{symbol} is not a Stock or Coin")
return replies
def intra_reply(self, symbol: Symbol) -> pd.DataFrame:
"""Returns price data for a symbol since the last market open.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available.
Otherwise returns empty pd.DataFrame.
"""
if isinstance(symbol, Stock):
return self.stock.intra_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.intra_reply(symbol)
else:
log.debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame()
def chart_reply(self, symbol: Symbol) -> pd.DataFrame:
"""Returns price data for a symbol of the past month up until the previous trading days close.
Also caches multiple requests made in the same day.
Parameters
----------
symbol : str
Stock symbol.
Returns
-------
pd.DataFrame
Returns a timeseries dataframe with high, low, and volume data if its available.
Otherwise returns empty pd.DataFrame.
"""
if isinstance(symbol, Stock):
return self.stock.chart_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.chart_reply(symbol)
else:
log.debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame()
def stat_reply(self, symbols: list[Symbol]) -> list[str]:
"""Gets key statistics for each symbol in the list
Parameters
----------
symbols : list[str]
List of stock symbols
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable
formatted string of the symbols statistics.
"""
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.stat_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.stat_reply(symbol))
else:
log.debug(f"{symbol} is not a Stock or Coin")
return replies
def cap_reply(self, symbols: list[Symbol]) -> list[str]:
"""Gets market cap for each symbol in the list
Parameters
----------
symbols : list[str]
List of stock symbols
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable
formatted string of the symbols market cap.
"""
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.cap_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.cap_reply(symbol))
else:
log.debug(f"{symbol} is not a Stock or Coin")
return replies
def spark_reply(self, symbols: list[Symbol]) -> list[str]:
"""Gets change for each symbol and returns it in a compact format
Parameters
----------
symbols : list[str]
List of stock symbols
Returns
-------
list[str]
List of human readable strings.
"""
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.spark_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.spark_reply(symbol))
else:
log.debug(f"{symbol} is not a Stock or Coin")
return replies
@cached(cache=TTLCache(maxsize=1024, ttl=600))
def trending(self) -> str:
"""Checks APIs for trending symbols.
Returns
-------
list[str]
List of preformatted strings to be sent to user.
"""
# stocks = self.stock.trending()
coins = self.crypto.trending()
reply = ""
log.warning(self.trending_count)
if self.trending_count:
reply += "🔥Trending on the Stock Bot:\n`"
reply += "" * len("Trending on the Stock Bot:") + "`\n"
sorted_trending = [s[0] for s in sorted(self.trending_count.items(), key=lambda item: item[1])][::-1][0:5]
log.warning(sorted_trending)
for t in sorted_trending:
reply += self.spark_reply(self.find_symbols(t))[0] + "\n"
if coins:
reply += "\n\n🦎Trending Crypto:\n`"
reply += "" * len("Trending Crypto:") + "`\n"
for coin in coins:
reply += coin + "\n"
if "`$GME" in reply:
reply = reply.replace("🔥", "🦍")
if reply:
return reply
else:
log.warning("Failed to collect trending data.")
return "Trending data is not currently available."
def random_pick(self) -> str:
choice = random.choice(list(self.stock.symbol_list["description"]) + list(self.crypto.symbol_list["description"]))
hold = (datetime.date.today() + datetime.timedelta(random.randint(1, 365))).strftime("%b %d, %Y")
return f"{choice}\nBuy and hold until: {hold}"
def batch_price_reply(self, symbols: list[Symbol]) -> list[str]:
"""Returns current market price or after hours if its available for a given stock symbol.
Parameters
----------
symbols : list
List of stock symbols.
Returns
-------
Dict[str, str]
Each symbol passed in is a key with its value being a human readable
markdown formatted string of the symbols price and movement.
"""
replies = []
stocks = []
coins = []
for symbol in symbols:
if isinstance(symbol, Stock):
stocks.append(symbol)
elif isinstance(symbol, Coin):
coins.append(symbol)
else:
log.debug(f"{symbol} is not a Stock or Coin")
if stocks:
for stock in stocks:
replies.append(self.stock.price_reply(stock))
if coins:
replies = replies + self.crypto.batch_price(coins)
return replies