"""Class with functions for running the bot with IEX Cloud. """ import logging import os from datetime import datetime from logging import warning from typing import List, Optional, Tuple import pandas as pd import requests as r import schedule from fuzzywuzzy import fuzz from Symbol import Stock class IEX_Symbol: """ Functions for finding stock market information about symbols. """ SYMBOL_REGEX = "[$]([a-zA-Z]{1,4})" searched_symbols = {} otc_list = [] charts = {} trending_cache = ["Trending Stocks Currently Unavailable."] def __init__(self) -> None: """Creates a Symbol Object Parameters ---------- IEX_TOKEN : str IEX API Token """ try: self.IEX_TOKEN = os.environ["IEX"] except KeyError: self.IEX_TOKEN = "" warning( "Starting without an IEX Token will not allow you to get market data!" ) if self.IEX_TOKEN != "": self.get_symbol_list() schedule.every().day.do(self.get_symbol_list) schedule.every().day.do(self.clear_charts) def get(self, endpoint, params: dict = {}, timeout=5) -> dict: url = "https://cloud.iexapis.com/stable" + endpoint # set token param if it wasn't passed. params["token"] = params.get("token", self.IEX_TOKEN) resp = r.get(url, params=params, timeout=timeout) # Make sure API returned a proper status code try: resp.raise_for_status() except r.exceptions.HTTPError as e: logging.error(e) return {} # Make sure API returned valid JSON try: resp_json = resp.json() return resp_json except r.exceptions.JSONDecodeError as e: logging.error(e) return {} def clear_charts(self) -> None: """ Clears cache of chart data. Charts are cached so that only 1 API call per 24 hours is needed since the chart data is expensive and a large download. """ self.charts = {} def get_symbol_list( self, return_df=False ) -> Optional[Tuple[pd.DataFrame, datetime]]: """Gets list of all symbols supported by IEX Parameters ---------- return_df : bool, optional return the dataframe of all stock symbols, by default False Returns ------- Optional[Tuple[pd.DataFrame, datetime]] If `return_df` is set to `True` returns a dataframe, otherwise returns `None`. """ reg_symbols = self.get("/ref-data/symbols") otc_symbols = self.get("/ref-data/otc/symbols") reg = pd.DataFrame(data=reg_symbols) otc = pd.DataFrame(data=otc_symbols) self.otc_list = set(otc["symbol"].to_list()) symbols = pd.concat([reg, otc]) symbols["description"] = "$" + symbols["symbol"] + ": " + symbols["name"] symbols["id"] = symbols["symbol"] symbols["type_id"] = "$" + symbols["symbol"].str.lower() symbols = symbols[["id", "symbol", "name", "description", "type_id"]] self.symbol_list = symbols if return_df: return symbols, datetime.now() def status(self) -> str: """Checks IEX Status dashboard for any current API issues. Returns ------- str Human readable text on status of IEX API """ resp = r.get( "https://pjmps0c34hp7.statuspage.io/api/v2/status.json", timeout=15, ) if resp.status_code == 200: status = resp.json()["status"] else: return "IEX Cloud did not respond. Please check their status page for more information. https://status.iexapis.com" if status["indicator"] == "none": return "IEX Cloud is currently not reporting any issues with its API." else: return ( f"{status['indicator']}: {status['description']}." + " Please check the status page for more information. https://status.iexapis.com" ) def search_symbols(self, search: str) -> List[Tuple[str, str]]: """Performs a fuzzy search to find stock symbols closest to a search term. Parameters ---------- search : str String used to search, could be a company name or something close to the companies stock ticker. Returns ------- List[tuple[str, str]] A list tuples of every stock sorted in order of how well they match. Each tuple contains: (Symbol, Issue Name). """ schedule.run_pending() search = search.lower() try: # https://stackoverflow.com/a/3845776/8774114 return self.searched_symbols[search] except KeyError: pass symbols = self.symbol_list symbols["Match"] = symbols.apply( lambda x: fuzz.ratio(search, f"{x['symbol']}".lower()), axis=1, ) symbols.sort_values(by="Match", ascending=False, inplace=True) if symbols["Match"].head().sum() < 300: symbols["Match"] = symbols.apply( lambda x: fuzz.partial_ratio(search, x["name"].lower()), axis=1, ) symbols.sort_values(by="Match", ascending=False, inplace=True) symbols = symbols.head(10) symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"]))) self.searched_symbols[search] = symbol_list return symbol_list def price_reply(self, symbol: Stock) -> str: """Returns price movement of Stock for the last market day, or after hours. Parameters ---------- symbol : Stock Returns ------- str Formatted markdown """ if IEXData := self.get(f"/stock/{symbol.id}/quote"): if symbol.symbol.upper() in self.otc_list: return f"OTC - {symbol.symbol.upper()}, {IEXData['companyName']} most recent price is: $**{IEXData['latestPrice']}**" keys = ( "extendedChangePercent", "extendedPrice", "companyName", "latestPrice", "changePercent", ) if set(keys).issubset(IEXData): if change := IEXData.get("changePercent", 0): change = round(change * 100, 2) else: change = 0 if ( IEXData.get("isUSMarketOpen", True) or (IEXData["extendedChangePercent"] is None) or (IEXData["extendedPrice"] is None) ): # Check if market is open. message = f"The current stock price of {IEXData['companyName']} is $**{IEXData['latestPrice']}**" else: message = ( f"{IEXData['companyName']} closed at $**{IEXData['latestPrice']}** with a change of {change}%," + f" after hours _(15 minutes delayed)_ the stock price is $**{IEXData['extendedPrice']}**" ) if change := IEXData.get("extendedChangePercent", 0): change = round(change * 100, 2) else: change = 0 # Determine wording of change text if change > 0: message += f", the stock is currently **up {change}%**" elif change < 0: message += f", the stock is currently **down {change}%**" else: message += ", the stock hasn't shown any movement today." else: message = ( f"The symbol: {symbol} encountered and error. This could be due to " ) else: message = f"The symbol: {symbol} was not found." return message def dividend_reply(self, symbol: Stock) -> str: """Returns the most recent, or next dividend date for a stock symbol. Parameters ---------- symbol : Stock Returns ------- str Formatted markdown """ if symbol.symbol.upper() in self.otc_list: return "OTC stocks do not currently support any commands." if resp := self.get(f"/stock/{symbol.id}/dividends/next"): try: IEXData = resp[0] except IndexError as e: return f"${symbol.id.upper()} either doesn't exist or pays no dividend." keys = ( "amount", "currency", "declaredDate", "exDate", "frequency", "paymentDate", "flag", ) if set(keys).issubset(IEXData): if IEXData["currency"] == "USD": price = f"${IEXData['amount']}" else: price = f"{IEXData['amount']} {IEXData['currency']}" # Pattern IEX uses for dividend date. pattern = "%Y-%m-%d" declared = datetime.strptime(IEXData["declaredDate"], pattern).strftime( "%A, %B %w" ) ex = datetime.strptime(IEXData["exDate"], pattern).strftime("%A, %B %w") payment = datetime.strptime(IEXData["paymentDate"], pattern).strftime( "%A, %B %w" ) daysDelta = ( datetime.strptime(IEXData["paymentDate"], pattern) - datetime.now() ).days return ( "The next dividend for " + f"{self.symbol_list[self.symbol_list['symbol']==symbol.id.upper()]['description'].item()}" # Get full name without api call + f" is on {payment} which is in {daysDelta} days." + f" The dividend is for {price} per share." + f"\n\nThe dividend was declared on {declared} and the ex-dividend date is {ex}" ) return f"${symbol.id.upper()} either doesn't exist or pays no dividend." def news_reply(self, symbol: Stock) -> str: """Gets most recent, english, non-paywalled news Parameters ---------- symbol : Stock Returns ------- str Formatted markdown """ if symbol.symbol.upper() in self.otc_list: return "OTC stocks do not currently support any commands." if data := self.get(f"/stock/{symbol.id}/news/last/15"): line = [] for news in data: if news["lang"] == "en" and not news["hasPaywall"]: line.append( f"*{news['source']}*: [{news['headline']}]({news['url']})" ) return f"News for **{symbol.id.upper()}**:\n" + "\n".join(line[:5]) else: return f"No news found for: {symbol.id}\nEither today is boring or the symbol does not exist." def info_reply(self, symbol: Stock) -> str: """Gets description for Stock Parameters ---------- symbol : Stock Returns ------- str Formatted text """ if symbol.symbol.upper() in self.otc_list: return "OTC stocks do not currently support any commands." if data := self.get(f"/stock/{symbol.id}/company"): [data.pop(k) for k in list(data) if data[k] == ""] if "description" in data: return data["description"] return f"No information found for: {symbol}\nEither today is boring or the symbol does not exist." def stat_reply(self, symbol: Stock) -> str: """Key statistics on a Stock Parameters ---------- symbol : Stock Returns ------- str Formatted markdown """ if symbol.symbol.upper() in self.otc_list: return "OTC stocks do not currently support any commands." if data := self.get(f"/stock/{symbol.id}/stats"): [data.pop(k) for k in list(data) if data[k] == ""] m = "" if "companyName" in data: m += f"Company Name: {data['companyName']}\n" if "marketcap" in data: m += f"Market Cap: ${data['marketcap']:,}\n" if "week52high" in data: m += f"52 Week (high-low): {data['week52high']:,} " if "week52low" in data: m += f"- {data['week52low']:,}\n" if "employees" in data: m += f"Number of Employees: {data['employees']:,}\n" if "nextEarningsDate" in data: m += f"Next Earnings Date: {data['nextEarningsDate']}\n" if "peRatio" in data: m += f"Price to Earnings: {data['peRatio']:.3f}\n" if "beta" in data: m += f"Beta: {data['beta']:.3f}\n" return m else: return f"No information found for: {symbol}\nEither today is boring or the symbol does not exist." def cap_reply(self, symbol: Stock) -> str: """Get the Market Cap of a stock""" if data := self.get(f"/stable/stock/{symbol.id}/stats"): try: cap = data["marketcap"] except KeyError: return f"{symbol.id} returned an error." message = f"The current market cap of {symbol.name} is $**{cap:,.2f}**" else: message = f"The Stock: {symbol.name} was not found or returned and error." return message def intra_reply(self, symbol: Stock) -> pd.DataFrame: """Returns price data for a symbol since the last market open. Parameters ---------- symbol : str Stock symbol. Returns ------- pd.DataFrame Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame. """ if symbol.symbol.upper() in self.otc_list: return pd.DataFrame() if symbol.id.upper() not in list(self.symbol_list["symbol"]): return pd.DataFrame() if data := self.get(f"/stock/{symbol.id}/intraday-prices"): df = pd.DataFrame(data) df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"]) df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"]) df = df.set_index("DT") return df return pd.DataFrame() def chart_reply(self, symbol: Stock) -> pd.DataFrame: """Returns price data for a symbol of the past month up until the previous trading days close. Also caches multiple requests made in the same day. Parameters ---------- symbol : str Stock symbol. Returns ------- pd.DataFrame Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame. """ schedule.run_pending() if symbol.symbol.upper() in self.otc_list: return pd.DataFrame() if symbol.id.upper() not in list(self.symbol_list["symbol"]): return pd.DataFrame() try: # https://stackoverflow.com/a/3845776/8774114 return self.charts[symbol.id.upper()] except KeyError: pass if data := self.get( f"/stock/{symbol.id}/chart/1mm", params={"chartInterval": 3, "includeToday": "false"}, ): df = pd.DataFrame(data) df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"]) df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"]) df = df.set_index("DT") self.charts[symbol.id.upper()] = df return df return pd.DataFrame() def trending(self) -> list[str]: """Gets current coins trending on IEX. Only returns when market is open. Returns ------- list[str] list of $ID: NAME, CHANGE% """ if data := self.get(f"/stock/market/list/mostactive"): self.trending_cache = [ f"`${s['symbol']}`: {s['companyName']}, {100*s['changePercent']:.2f}%" for s in data ] return self.trending_cache