mirror of
https://gitlab.com/simple-stock-bots/simple-stock-bot.git
synced 2025-06-16 07:16:40 +00:00
368 lines
11 KiB
Python
368 lines
11 KiB
Python
import datetime as dt
|
|
import logging
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Dict
|
|
|
|
import humanize
|
|
import pandas as pd
|
|
import pytz
|
|
import requests as r
|
|
import schedule
|
|
|
|
|
|
from common.Symbol import Stock
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class MarketData:
|
|
"""
|
|
Functions for finding stock market information about symbols from MarkData.app
|
|
"""
|
|
|
|
SYMBOL_REGEX = "[$]([a-zA-Z]{1,4})"
|
|
|
|
symbol_list: Dict[str, Dict] = {}
|
|
charts: Dict[Stock, pd.DataFrame] = {}
|
|
|
|
openTime = dt.time(hour=9, minute=30, second=0)
|
|
marketTimeZone = pytz.timezone("US/Eastern")
|
|
|
|
def __init__(self) -> None:
|
|
"""Creates a Symbol Object
|
|
|
|
Parameters
|
|
----------
|
|
MARKETDATA_TOKEN : str
|
|
MarketData.app API Token
|
|
"""
|
|
|
|
try:
|
|
self.MARKETDATA_TOKEN = os.environ["MARKETDATA"]
|
|
|
|
if self.MARKETDATA_TOKEN == "TOKEN":
|
|
self.MARKETDATA_TOKEN = ""
|
|
except KeyError:
|
|
self.MARKETDATA_TOKEN = ""
|
|
log.warning("Starting without an MarketData.app Token will not allow you to get market data!")
|
|
log.warning("Use this affiliate link so that the bot can stay free:")
|
|
log.warning("https://dashboard.marketdata.app/marketdata/aff/go/misterbiggs?keyword=repo")
|
|
|
|
if self.MARKETDATA_TOKEN != "":
|
|
schedule.every().day.do(self.clear_charts)
|
|
|
|
self.get_symbol_list()
|
|
schedule.every().day.do(self.get_symbol_list)
|
|
|
|
def get(self, endpoint, params=None, timeout=10, headers=None) -> dict:
|
|
url = "https://api.marketdata.app/v1/" + endpoint
|
|
|
|
if params is None:
|
|
params = {}
|
|
|
|
# set token param if it wasn't passed.
|
|
params["token"] = self.MARKETDATA_TOKEN
|
|
|
|
# Undocumented query variable that ensures bot usage can be
|
|
# monitored even if someone doesn't make it through an affiliate link.
|
|
params["application"] = "simplestockbot"
|
|
|
|
if headers is None:
|
|
headers = {}
|
|
headers = {"User-Agent": "Simple Stock Bot anson@ansonbiggs.com"} | headers
|
|
|
|
resp = r.get(url, params=params, timeout=timeout, headers=headers)
|
|
|
|
logging.error(resp.headers.items())
|
|
|
|
# Make sure API returned a proper status code
|
|
try:
|
|
resp.raise_for_status()
|
|
except r.exceptions.HTTPError as e:
|
|
logging.error(e)
|
|
return {}
|
|
|
|
# Make sure API returned valid JSON
|
|
try:
|
|
resp_json = resp.json()
|
|
|
|
match resp_json["s"]:
|
|
case "ok":
|
|
return resp_json
|
|
case "no_data":
|
|
return resp_json
|
|
case "error":
|
|
logging.error("MarketData Error:\n" + resp_json["errmsg"])
|
|
return {}
|
|
|
|
except r.exceptions.JSONDecodeError as e:
|
|
logging.error(e)
|
|
|
|
return {}
|
|
|
|
def symbol_id(self, symbol: str) -> Dict[str, Dict]:
|
|
return self.symbol_list.get(symbol.upper(), None)
|
|
|
|
def get_symbol_list(self):
|
|
# Doesn't use `self.get()` since needs are much different
|
|
sec_resp = r.get(
|
|
"https://www.sec.gov/files/company_tickers.json",
|
|
headers={
|
|
"User-Agent": "Simple Stock Bot anson@ansonbiggs.com",
|
|
"Accept-Encoding": "gzip, deflate",
|
|
"Host": "www.sec.gov",
|
|
},
|
|
)
|
|
sec_resp.raise_for_status()
|
|
sec_data = sec_resp.json()
|
|
|
|
for rank, ticker_info in sec_data.items():
|
|
self.symbol_list[ticker_info["ticker"]] = {
|
|
"ticker": ticker_info["ticker"],
|
|
"title": ticker_info["title"],
|
|
"mkt_cap_rank": rank,
|
|
}
|
|
|
|
def clear_charts(self) -> None:
|
|
"""
|
|
Clears cache of chart data.
|
|
Charts are cached so that only 1 API call per 24 hours is needed since the
|
|
chart data is expensive and a large download.
|
|
"""
|
|
self.charts = {}
|
|
|
|
def status(self) -> str:
|
|
# TODO: At the moment this API is poorly documented, this function likely needs to be revisited later.
|
|
|
|
try:
|
|
status = r.get(
|
|
"https://stats.uptimerobot.com/api/getMonitorList/6Kv3zIow0A",
|
|
timeout=5,
|
|
)
|
|
status.raise_for_status()
|
|
except r.HTTPError:
|
|
return f"API returned an HTTP error code {status.status_code} in {status.elapsed.total_seconds()} seconds."
|
|
except r.Timeout:
|
|
return "API timed out before it was able to give status. This is likely due to a surge in usage or a complete outage."
|
|
|
|
statusJSON = status.json()
|
|
|
|
if statusJSON["status"] == "ok":
|
|
return (
|
|
f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} seconds."
|
|
)
|
|
else:
|
|
return f"MarketData.app is currently reporting the following status: {statusJSON['status']}"
|
|
|
|
def price_reply(self, symbol: Stock) -> str:
|
|
"""Returns price movement of Stock for the last market day, or after hours.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : Stock
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
Formatted markdown
|
|
"""
|
|
|
|
if quoteResp := self.get(f"stocks/quotes/{symbol.symbol}/"):
|
|
price = round(quoteResp["last"][0], 2)
|
|
|
|
try:
|
|
changePercent = round(quoteResp["changepct"][0], 2)
|
|
except TypeError:
|
|
return f"The price of {symbol.name} is ${price}"
|
|
|
|
message = f"The current price of {symbol.name} is ${price} and "
|
|
|
|
if changePercent > 0.0:
|
|
message += f"is currently up {changePercent}% for the day."
|
|
elif changePercent < 0.0:
|
|
message += f"is currently down {changePercent}% for the day."
|
|
else:
|
|
message += "hasn't shown any movement for the day."
|
|
|
|
return message
|
|
else:
|
|
return f"Getting a quote for {symbol} encountered an error."
|
|
|
|
def spark_reply(self, symbol: Stock) -> str:
|
|
if quoteResp := self.get(f"stocks/quotes/{symbol}/"):
|
|
try:
|
|
changePercent = round(quoteResp["changepct"][0], 2)
|
|
return f"`{symbol.tag}`: {changePercent}%"
|
|
except TypeError:
|
|
pass
|
|
|
|
return f"`{symbol.tag}`"
|
|
|
|
def intra_reply(self, symbol: Stock) -> pd.DataFrame:
|
|
"""Returns price data for a symbol of the past month up until the previous trading days close.
|
|
Also caches multiple requests made in the same day.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : str
|
|
Stock symbol.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
|
|
"""
|
|
schedule.run_pending()
|
|
|
|
try:
|
|
return self.charts[symbol.id.upper()]
|
|
except KeyError:
|
|
pass
|
|
|
|
resolution = "15" # minutes
|
|
now = dt.datetime.now(self.marketTimeZone)
|
|
|
|
if self.openTime < now.time():
|
|
startTime = now.replace(hour=9, minute=30)
|
|
else:
|
|
startTime = now - dt.timedelta(days=1)
|
|
|
|
if data := self.get(
|
|
f"stocks/candles/{resolution}/{symbol}",
|
|
params={
|
|
"from": startTime.timestamp(),
|
|
"to": now.timestamp(),
|
|
"extended": True,
|
|
},
|
|
):
|
|
data.pop("s")
|
|
df = pd.DataFrame(data)
|
|
df["t"] = pd.to_datetime(df["t"], unit="s", utc=True)
|
|
df.set_index("t", inplace=True)
|
|
|
|
df.rename(
|
|
columns={
|
|
"o": "Open",
|
|
"h": "High",
|
|
"l": "Low",
|
|
"c": "Close",
|
|
"v": "Volume",
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
self.charts[symbol.id.upper()] = df
|
|
return df
|
|
|
|
return pd.DataFrame()
|
|
|
|
def chart_reply(self, symbol: Stock) -> pd.DataFrame:
|
|
"""Returns price data for a symbol of the past month up until the previous trading days close.
|
|
Also caches multiple requests made in the same day.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : str
|
|
Stock symbol.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
|
|
"""
|
|
schedule.run_pending()
|
|
|
|
try:
|
|
return self.charts[symbol.id.upper()]
|
|
except KeyError:
|
|
pass
|
|
|
|
to_date = dt.datetime.today().strftime("%Y-%m-%d")
|
|
from_date = (dt.datetime.today() - dt.timedelta(days=30)).strftime("%Y-%m-%d")
|
|
resultion = "daily"
|
|
|
|
if data := self.get(
|
|
f"stocks/candles/{resultion}/{symbol}",
|
|
params={
|
|
"from": from_date,
|
|
"to": to_date,
|
|
},
|
|
):
|
|
data.pop("s")
|
|
|
|
df = pd.DataFrame(data)
|
|
df["t"] = pd.to_datetime(df["t"], unit="s")
|
|
df.set_index("t", inplace=True)
|
|
|
|
df.rename(
|
|
columns={
|
|
"o": "Open",
|
|
"h": "High",
|
|
"l": "Low",
|
|
"c": "Close",
|
|
"v": "Volume",
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
self.charts[symbol.id.upper()] = df
|
|
return df
|
|
|
|
return pd.DataFrame()
|
|
|
|
def options_reply(self, request: str) -> str:
|
|
"""Undocumented API Usage!"""
|
|
|
|
options_data = self.get(f"options/quotes/{request}")
|
|
|
|
for key in options_data.keys():
|
|
options_data[key] = options_data[key][0]
|
|
|
|
options_data["underlying"] = "$" + options_data["underlying"]
|
|
|
|
options_data["updated"] = humanize.naturaltime(dt.datetime.now() - dt.datetime.fromtimestamp(options_data["updated"]))
|
|
|
|
options_data["expiration"] = humanize.naturaltime(
|
|
dt.datetime.now() - dt.datetime.fromtimestamp(options_data["expiration"])
|
|
)
|
|
|
|
options_data["firstTraded"] = humanize.naturaltime(
|
|
dt.datetime.now() - dt.datetime.fromtimestamp(options_data["firstTraded"])
|
|
)
|
|
|
|
rename = {
|
|
"optionSymbol": "Option Symbol",
|
|
"underlying": "Underlying",
|
|
"expiration": "Expiration",
|
|
"side": "side",
|
|
"strike": "strike",
|
|
"firstTraded": "First Traded",
|
|
"updated": "Last Updated",
|
|
"bid": "bid",
|
|
"bidSize": "bidSize",
|
|
"mid": "mid",
|
|
"ask": "ask",
|
|
"askSize": "askSize",
|
|
"last": "last",
|
|
"openInterest": "Open Interest",
|
|
"volume": "Volume",
|
|
"inTheMoney": "inTheMoney",
|
|
"intrinsicValue": "Intrinsic Value",
|
|
"extrinsicValue": "Extrinsic Value",
|
|
"underlyingPrice": "Underlying Price",
|
|
"iv": "Implied Volatility",
|
|
"delta": "delta",
|
|
"gamma": "gamma",
|
|
"theta": "theta",
|
|
"vega": "vega",
|
|
"rho": "rho",
|
|
}
|
|
|
|
options_cleaned = OrderedDict()
|
|
for old, new in rename.items():
|
|
if old in options_data:
|
|
options_cleaned[new] = options_data[old]
|
|
|
|
return options_cleaned
|