mirror of
https://gitlab.com/simple-stock-bots/simple-stock-bot.git
synced 2025-06-15 14:56:40 +00:00
270 lines
8.4 KiB
Python
270 lines
8.4 KiB
Python
import datetime as dt
|
|
import logging
|
|
import os
|
|
from typing import Dict
|
|
|
|
import pandas as pd
|
|
import pytz
|
|
import requests as r
|
|
import schedule
|
|
|
|
from common.Symbol import Stock
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class MarketData:
|
|
"""
|
|
Functions for finding stock market information about symbols from MarkData.app
|
|
"""
|
|
|
|
SYMBOL_REGEX = "[$]([a-zA-Z]{1,4})"
|
|
|
|
charts: Dict[Stock, pd.DataFrame] = {}
|
|
|
|
openTime = dt.time(hour=9, minute=30, second=0)
|
|
marketTimeZone = pytz.timezone("US/Eastern")
|
|
|
|
def __init__(self) -> None:
|
|
"""Creates a Symbol Object
|
|
|
|
Parameters
|
|
----------
|
|
MARKETDATA_TOKEN : str
|
|
MarketData.app API Token
|
|
"""
|
|
|
|
try:
|
|
self.MARKETDATA_TOKEN = os.environ["MARKETDATA"]
|
|
|
|
if self.MARKETDATA_TOKEN == "TOKEN":
|
|
self.MARKETDATA_TOKEN = ""
|
|
except KeyError:
|
|
self.MARKETDATA_TOKEN = ""
|
|
log.warning("Starting without an MarketData.app Token will not allow you to get market data!")
|
|
log.warning("Use this affiliate link so that the bot can stay free:")
|
|
log.warning("https://dashboard.marketdata.app/marketdata/aff/go/misterbiggs?keyword=repo")
|
|
|
|
if self.MARKETDATA_TOKEN != "":
|
|
schedule.every().day.do(self.clear_charts)
|
|
|
|
def get(self, endpoint, params: dict = {}, timeout=10) -> dict:
|
|
url = "https://api.marketdata.app/v1/" + endpoint
|
|
|
|
# set token param if it wasn't passed.
|
|
params["token"] = self.MARKETDATA_TOKEN
|
|
|
|
# Undocumented query variable that ensures bot usage can be
|
|
# monitored even if someone doesn't make it through an affiliate link.
|
|
params["application"] = "simplestockbot"
|
|
|
|
resp = r.get(url, params=params, timeout=timeout)
|
|
|
|
# Make sure API returned a proper status code
|
|
try:
|
|
resp.raise_for_status()
|
|
except r.exceptions.HTTPError as e:
|
|
logging.error(e)
|
|
return {}
|
|
|
|
# Make sure API returned valid JSON
|
|
try:
|
|
resp_json = resp.json()
|
|
|
|
match resp_json["s"]:
|
|
case "ok":
|
|
return resp_json
|
|
case "no_data":
|
|
return resp_json
|
|
case "error":
|
|
logging.error("MarketData Error:\n" + resp_json["errmsg"])
|
|
return {}
|
|
|
|
except r.exceptions.JSONDecodeError as e:
|
|
logging.error(e)
|
|
|
|
return {}
|
|
|
|
def clear_charts(self) -> None:
|
|
"""
|
|
Clears cache of chart data.
|
|
Charts are cached so that only 1 API call per 24 hours is needed since the
|
|
chart data is expensive and a large download.
|
|
"""
|
|
self.charts = {}
|
|
|
|
def status(self) -> str:
|
|
# TODO: At the moment this API is poorly documented, this function likely needs to be revisited later.
|
|
|
|
try:
|
|
status = r.get(
|
|
"https://stats.uptimerobot.com/api/getMonitorList/6Kv3zIow0A",
|
|
timeout=5,
|
|
)
|
|
status.raise_for_status()
|
|
except r.HTTPError:
|
|
return f"API returned an HTTP error code {status.status_code} in {status.elapsed.total_seconds()} seconds."
|
|
except r.Timeout:
|
|
return "API timed out before it was able to give status. This is likely due to a surge in usage or a complete outage."
|
|
|
|
statusJSON = status.json()
|
|
|
|
if statusJSON["status"] == "ok":
|
|
return (
|
|
f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} seconds."
|
|
)
|
|
else:
|
|
return f"MarketData.app is currently reporting the following status: {statusJSON['status']}"
|
|
|
|
def price_reply(self, symbol: Stock) -> str:
|
|
"""Returns price movement of Stock for the last market day, or after hours.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : Stock
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
Formatted markdown
|
|
"""
|
|
|
|
if quoteResp := self.get(f"stocks/quotes/{symbol}/"):
|
|
price = round(quoteResp["last"][0], 2)
|
|
|
|
try:
|
|
changePercent = round(quoteResp["changepct"][0], 2)
|
|
except TypeError:
|
|
return f"The price of {symbol} is {price}"
|
|
|
|
message = f"The current price of {symbol.name} is ${price} and "
|
|
|
|
if changePercent > 0.0:
|
|
message += f"is currently up {changePercent}% for the day."
|
|
elif changePercent < 0.0:
|
|
message += f"is currently down {changePercent}% for the day."
|
|
else:
|
|
message += "hasn't shown any movement for the day."
|
|
|
|
return message
|
|
else:
|
|
return f"Getting a quote for {symbol} encountered an error."
|
|
|
|
def spark_reply(self, symbol: Stock) -> str:
|
|
if quoteResp := self.get(f"stocks/quotes/{symbol}/"):
|
|
try:
|
|
changePercent = round(quoteResp["changepct"][0], 2)
|
|
return f"`{symbol.tag}`: {changePercent}%"
|
|
except TypeError:
|
|
pass
|
|
|
|
return f"`{symbol.tag}`"
|
|
|
|
def intra_reply(self, symbol: Stock) -> pd.DataFrame:
|
|
"""Returns price data for a symbol of the past month up until the previous trading days close.
|
|
Also caches multiple requests made in the same day.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : str
|
|
Stock symbol.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
|
|
"""
|
|
schedule.run_pending()
|
|
|
|
try:
|
|
return self.charts[symbol.id.upper()]
|
|
except KeyError:
|
|
pass
|
|
|
|
resolution = "15" # minutes
|
|
now = dt.datetime.now(self.marketTimeZone)
|
|
|
|
if self.openTime < now.time():
|
|
startTime = now.replace(hour=9, minute=30)
|
|
else:
|
|
startTime = now - dt.timedelta(days=1)
|
|
|
|
if data := self.get(
|
|
f"stocks/candles/{resolution}/{symbol}",
|
|
params={"from": startTime.timestamp(), "to": now.timestamp(), "extended": True},
|
|
):
|
|
data.pop("s")
|
|
df = pd.DataFrame(data)
|
|
df["t"] = pd.to_datetime(df["t"], unit="s", utc=True)
|
|
df.set_index("t", inplace=True)
|
|
|
|
df.rename(
|
|
columns={
|
|
"o": "Open",
|
|
"h": "High",
|
|
"l": "Low",
|
|
"c": "Close",
|
|
"v": "Volume",
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
self.charts[symbol.id.upper()] = df
|
|
return df
|
|
|
|
return pd.DataFrame()
|
|
|
|
def chart_reply(self, symbol: Stock) -> pd.DataFrame:
|
|
"""Returns price data for a symbol of the past month up until the previous trading days close.
|
|
Also caches multiple requests made in the same day.
|
|
|
|
Parameters
|
|
----------
|
|
symbol : str
|
|
Stock symbol.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
Returns a timeseries dataframe with high, low, and volume data if its available. Otherwise returns empty pd.DataFrame.
|
|
"""
|
|
schedule.run_pending()
|
|
|
|
try:
|
|
return self.charts[symbol.id.upper()]
|
|
except KeyError:
|
|
pass
|
|
|
|
to_date = dt.datetime.today().strftime("%Y-%m-%d")
|
|
from_date = (dt.datetime.today() - dt.timedelta(days=30)).strftime("%Y-%m-%d")
|
|
resultion = "daily"
|
|
|
|
if data := self.get(
|
|
f"stocks/candles/{resultion}/{symbol}",
|
|
params={
|
|
"from": from_date,
|
|
"to": to_date,
|
|
},
|
|
):
|
|
data.pop("s")
|
|
|
|
df = pd.DataFrame(data)
|
|
df["t"] = pd.to_datetime(df["t"], unit="s")
|
|
df.set_index("t", inplace=True)
|
|
|
|
df.rename(
|
|
columns={
|
|
"o": "Open",
|
|
"h": "High",
|
|
"l": "Low",
|
|
"c": "Close",
|
|
"v": "Volume",
|
|
},
|
|
inplace=True,
|
|
)
|
|
|
|
self.charts[symbol.id.upper()] = df
|
|
return df
|
|
|
|
return pd.DataFrame()
|