mirror of
https://gitlab.com/simple-stock-bots/simple-telegram-stock-bot.git
synced 2025-07-25 07:31:48 +00:00
fixed inline #82
This commit is contained in:
@@ -9,7 +9,6 @@ from logging import critical, debug, error, info, warning
|
||||
import pandas as pd
|
||||
import schedule
|
||||
from cachetools import TTLCache, cached
|
||||
from fuzzywuzzy import fuzz
|
||||
|
||||
from cg_Crypto import cg_Crypto
|
||||
from IEX_Symbol import IEX_Symbol
|
||||
@@ -19,7 +18,6 @@ from Symbol import Coin, Stock, Symbol
|
||||
class Router:
|
||||
STOCK_REGEX = "(?:^|[^\\$])\\$([a-zA-Z.]{1,6})"
|
||||
CRYPTO_REGEX = "[$]{2}([a-zA-Z]{1,20})"
|
||||
searched_symbols = {}
|
||||
trending_count = {}
|
||||
|
||||
def __init__(self):
|
||||
@@ -110,45 +108,7 @@ class Router:
|
||||
|
||||
return stats
|
||||
|
||||
def search_symbols(self, search: str) -> list[tuple[str, str]]:
|
||||
"""Performs a fuzzy search to find stock symbols closest to a search term.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
search : str
|
||||
String used to search, could be a company name or something close to the companies stock ticker.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[tuple[str, str]]
|
||||
A list tuples of every stock sorted in order of how well they match.
|
||||
Each tuple contains: (Symbol, Issue Name).
|
||||
"""
|
||||
|
||||
df = pd.concat([self.stock.symbol_list, self.crypto.symbol_list])
|
||||
|
||||
search = search.lower()
|
||||
|
||||
df["Match"] = df.apply(
|
||||
lambda x: fuzz.ratio(search, f"{x['symbol']}".lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
df.sort_values(by="Match", ascending=False, inplace=True)
|
||||
# if df["Match"].head().sum() < 300:
|
||||
# df["Match"] = df.apply(
|
||||
# lambda x: fuzz.partial_ratio(search, x["name"].lower()),
|
||||
# axis=1,
|
||||
# )
|
||||
|
||||
# df.sort_values(by="Match", ascending=False, inplace=True)
|
||||
|
||||
symbols = df.head(20)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
|
||||
def inline_search(self, search: str) -> list[tuple[str, str]]:
|
||||
def inline_search(self, search: str, matches: int = 5) -> pd.DataFrame:
|
||||
"""Searches based on the shortest symbol that contains the same string as the search.
|
||||
Should be very fast compared to a fuzzy search.
|
||||
|
||||
@@ -165,16 +125,16 @@ class Router:
|
||||
|
||||
df = pd.concat([self.stock.symbol_list, self.crypto.symbol_list])
|
||||
|
||||
search = search.lower()
|
||||
df = df[
|
||||
df["description"].str.contains(search, regex=False, case=False)
|
||||
].sort_values(by="type_id", key=lambda x: x.str.len())
|
||||
|
||||
df = df[df["type_id"].str.contains(search, regex=False)].sort_values(
|
||||
by="type_id", key=lambda x: x.str.len()
|
||||
symbols = df.head(matches)
|
||||
symbols["price_reply"] = symbols["type_id"].apply(
|
||||
lambda sym: self.price_reply(self.find_symbols(sym))[0]
|
||||
)
|
||||
|
||||
symbols = df.head(20)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
return symbols
|
||||
|
||||
def price_reply(self, symbols: list[Symbol]) -> list[str]:
|
||||
"""Returns current market price or after hours if its available for a given stock symbol.
|
||||
|
Reference in New Issue
Block a user