mirror of
https://gitlab.com/simple-stock-bots/simple-telegram-stock-bot.git
synced 2025-06-16 15:06:53 +00:00
fixed inline #82
This commit is contained in:
parent
2f3cef4ec4
commit
87aeafc77f
@ -10,7 +10,6 @@ from typing import List, Optional, Tuple
|
||||
import pandas as pd
|
||||
import requests as r
|
||||
import schedule
|
||||
from fuzzywuzzy import fuzz
|
||||
|
||||
from Symbol import Stock
|
||||
|
||||
@ -141,46 +140,6 @@ class IEX_Symbol:
|
||||
+ " Please check the status page for more information. https://status.iexapis.com"
|
||||
)
|
||||
|
||||
def search_symbols(self, search: str) -> List[Tuple[str, str]]:
|
||||
"""Performs a fuzzy search to find stock symbols closest to a search term.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
search : str
|
||||
String used to search, could be a company name or something close to the companies stock ticker.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[tuple[str, str]]
|
||||
A list tuples of every stock sorted in order of how well they match. Each tuple contains: (Symbol, Issue Name).
|
||||
"""
|
||||
|
||||
schedule.run_pending()
|
||||
search = search.lower()
|
||||
try: # https://stackoverflow.com/a/3845776/8774114
|
||||
return self.searched_symbols[search]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
symbols = self.symbol_list
|
||||
symbols["Match"] = symbols.apply(
|
||||
lambda x: fuzz.ratio(search, f"{x['symbol']}".lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
symbols.sort_values(by="Match", ascending=False, inplace=True)
|
||||
if symbols["Match"].head().sum() < 300:
|
||||
symbols["Match"] = symbols.apply(
|
||||
lambda x: fuzz.partial_ratio(search, x["name"].lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
symbols.sort_values(by="Match", ascending=False, inplace=True)
|
||||
symbols = symbols.head(10)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
|
||||
def price_reply(self, symbol: Stock) -> str:
|
||||
"""Returns price movement of Stock for the last market day, or after hours.
|
||||
|
||||
|
34
bot.py
34
bot.py
@ -261,8 +261,8 @@ def information(update: Update, context: CallbackContext):
|
||||
|
||||
def search(update: Update, context: CallbackContext):
|
||||
"""
|
||||
Uses fuzzy search on full list of stocks and crypto names
|
||||
and descriptions then returns the top matches in order.
|
||||
Searches on full list of stocks and crypto descriptions
|
||||
then returns the top matches in order of smallest symbol name length.
|
||||
"""
|
||||
info(f"Search command ran by {update.message.chat.username}")
|
||||
message = update.message.text.replace("/search ", "")
|
||||
@ -275,11 +275,13 @@ def search(update: Update, context: CallbackContext):
|
||||
return
|
||||
|
||||
context.bot.send_chat_action(chat_id=chat_id, action=telegram.ChatAction.TYPING)
|
||||
queries = s.search_symbols(message)[:10]
|
||||
if queries:
|
||||
reply = "*Search Results:*\n`$ticker: Company Name`\n`" + ("-" * 21) + "`\n"
|
||||
for query in queries:
|
||||
reply += "`" + query[1] + "`\n"
|
||||
queries = s.inline_search(message, matches=10)
|
||||
if not queries.empty:
|
||||
reply = "*Search Results:*\n`$ticker` : Company Name\n`" + ("-" * 21) + "`\n"
|
||||
for _, query in queries.iterrows():
|
||||
desc = query["description"]
|
||||
reply += "`" + desc.replace(": ", "` : ") + "\n"
|
||||
print(reply)
|
||||
update.message.reply_text(
|
||||
text=reply,
|
||||
parse_mode=telegram.ParseMode.MARKDOWN,
|
||||
@ -466,28 +468,23 @@ def inline_query(update: Update, context: CallbackContext):
|
||||
Handles inline query. Searches by looking if query is contained
|
||||
in the symbol and returns matches in alphabetical order.
|
||||
"""
|
||||
info(f"Inline command ran by {update.message.chat.username}")
|
||||
# info(f"Inline command ran by {update.message.chat.username}")
|
||||
info(f"Query: {update.inline_query.query}")
|
||||
matches = s.inline_search(update.inline_query.query)[:5]
|
||||
|
||||
symbols = " ".join([match[1].split(":")[0] for match in matches])
|
||||
prices = s.batch_price_reply(s.find_symbols(symbols))
|
||||
matches = s.inline_search(update.inline_query.query)
|
||||
|
||||
results = []
|
||||
for match, price in zip(matches, prices):
|
||||
try:
|
||||
for _, row in matches.iterrows():
|
||||
print(row)
|
||||
results.append(
|
||||
InlineQueryResultArticle(
|
||||
str(uuid4()),
|
||||
title=match[1],
|
||||
title=row["description"],
|
||||
input_message_content=InputTextMessageContent(
|
||||
price, parse_mode=telegram.ParseMode.MARKDOWN
|
||||
row["price_reply"], parse_mode=telegram.ParseMode.MARKDOWN
|
||||
),
|
||||
)
|
||||
)
|
||||
except TypeError:
|
||||
warning(f"{match} caused error in inline query.")
|
||||
pass
|
||||
|
||||
if len(results) == 5:
|
||||
update.inline_query.answer(results)
|
||||
@ -568,6 +565,7 @@ def main():
|
||||
dp.add_handler(CommandHandler("random", rand_pick))
|
||||
dp.add_handler(CommandHandler("donate", donate))
|
||||
dp.add_handler(CommandHandler("status", status))
|
||||
dp.add_handler(CommandHandler("inline", inline_query))
|
||||
|
||||
# Charting can be slow so they run async.
|
||||
dp.add_handler(CommandHandler("intra", intra, run_async=True))
|
||||
|
42
cg_Crypto.py
42
cg_Crypto.py
@ -9,7 +9,6 @@ from typing import List, Optional, Tuple
|
||||
import pandas as pd
|
||||
import requests as r
|
||||
import schedule
|
||||
from fuzzywuzzy import fuzz
|
||||
from markdownify import markdownify
|
||||
|
||||
from Symbol import Coin
|
||||
@ -74,7 +73,7 @@ class cg_Crypto:
|
||||
"$$" + symbols["symbol"].str.upper() + ": " + symbols["name"]
|
||||
)
|
||||
symbols = symbols[["id", "symbol", "name", "description"]]
|
||||
symbols["type_id"] = "$$" + symbols["id"]
|
||||
symbols["type_id"] = "$$" + symbols["symbol"]
|
||||
|
||||
self.symbol_list = symbols
|
||||
if return_df:
|
||||
@ -99,45 +98,6 @@ class cg_Crypto:
|
||||
except:
|
||||
return f"CoinGecko API returned an error code {status.status_code} in {status.elapsed.total_seconds()} Seconds."
|
||||
|
||||
def search_symbols(self, search: str) -> List[Tuple[str, str]]:
|
||||
"""Performs a fuzzy search to find coin symbols closest to a search term.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
search : str
|
||||
String used to search, could be a company name or something close to the companies coin ticker.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[tuple[str, str]]
|
||||
A list tuples of every coin sorted in order of how well they match. Each tuple contains: (Symbol, Issue Name).
|
||||
"""
|
||||
schedule.run_pending()
|
||||
search = search.lower()
|
||||
try: # https://stackoverflow.com/a/3845776/8774114
|
||||
return self.searched_symbols[search]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
symbols = self.symbol_list
|
||||
symbols["Match"] = symbols.apply(
|
||||
lambda x: fuzz.ratio(search, f"{x['symbol']}".lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
symbols.sort_values(by="Match", ascending=False, inplace=True)
|
||||
if symbols["Match"].head().sum() < 300:
|
||||
symbols["Match"] = symbols.apply(
|
||||
lambda x: fuzz.partial_ratio(search, x["name"].lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
symbols.sort_values(by="Match", ascending=False, inplace=True)
|
||||
symbols = symbols.head(10)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
|
||||
def price_reply(self, coin: Coin) -> str:
|
||||
"""Returns current market price or after hours if its available for a given coin symbol.
|
||||
|
||||
|
@ -1,8 +1,6 @@
|
||||
python-telegram-bot==13.5
|
||||
requests==2.25.1
|
||||
pandas==1.2.1
|
||||
fuzzywuzzy==0.18.0
|
||||
python-Levenshtein==0.12.1
|
||||
schedule==1.0.0
|
||||
mplfinance==0.12.7a5
|
||||
markdownify==0.6.5
|
||||
|
@ -9,7 +9,6 @@ from logging import critical, debug, error, info, warning
|
||||
import pandas as pd
|
||||
import schedule
|
||||
from cachetools import TTLCache, cached
|
||||
from fuzzywuzzy import fuzz
|
||||
|
||||
from cg_Crypto import cg_Crypto
|
||||
from IEX_Symbol import IEX_Symbol
|
||||
@ -19,7 +18,6 @@ from Symbol import Coin, Stock, Symbol
|
||||
class Router:
|
||||
STOCK_REGEX = "(?:^|[^\\$])\\$([a-zA-Z.]{1,6})"
|
||||
CRYPTO_REGEX = "[$]{2}([a-zA-Z]{1,20})"
|
||||
searched_symbols = {}
|
||||
trending_count = {}
|
||||
|
||||
def __init__(self):
|
||||
@ -110,45 +108,7 @@ class Router:
|
||||
|
||||
return stats
|
||||
|
||||
def search_symbols(self, search: str) -> list[tuple[str, str]]:
|
||||
"""Performs a fuzzy search to find stock symbols closest to a search term.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
search : str
|
||||
String used to search, could be a company name or something close to the companies stock ticker.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[tuple[str, str]]
|
||||
A list tuples of every stock sorted in order of how well they match.
|
||||
Each tuple contains: (Symbol, Issue Name).
|
||||
"""
|
||||
|
||||
df = pd.concat([self.stock.symbol_list, self.crypto.symbol_list])
|
||||
|
||||
search = search.lower()
|
||||
|
||||
df["Match"] = df.apply(
|
||||
lambda x: fuzz.ratio(search, f"{x['symbol']}".lower()),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
df.sort_values(by="Match", ascending=False, inplace=True)
|
||||
# if df["Match"].head().sum() < 300:
|
||||
# df["Match"] = df.apply(
|
||||
# lambda x: fuzz.partial_ratio(search, x["name"].lower()),
|
||||
# axis=1,
|
||||
# )
|
||||
|
||||
# df.sort_values(by="Match", ascending=False, inplace=True)
|
||||
|
||||
symbols = df.head(20)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
|
||||
def inline_search(self, search: str) -> list[tuple[str, str]]:
|
||||
def inline_search(self, search: str, matches: int = 5) -> pd.DataFrame:
|
||||
"""Searches based on the shortest symbol that contains the same string as the search.
|
||||
Should be very fast compared to a fuzzy search.
|
||||
|
||||
@ -165,16 +125,16 @@ class Router:
|
||||
|
||||
df = pd.concat([self.stock.symbol_list, self.crypto.symbol_list])
|
||||
|
||||
search = search.lower()
|
||||
df = df[
|
||||
df["description"].str.contains(search, regex=False, case=False)
|
||||
].sort_values(by="type_id", key=lambda x: x.str.len())
|
||||
|
||||
df = df[df["type_id"].str.contains(search, regex=False)].sort_values(
|
||||
by="type_id", key=lambda x: x.str.len()
|
||||
symbols = df.head(matches)
|
||||
symbols["price_reply"] = symbols["type_id"].apply(
|
||||
lambda sym: self.price_reply(self.find_symbols(sym))[0]
|
||||
)
|
||||
|
||||
symbols = df.head(20)
|
||||
symbol_list = list(zip(list(symbols["symbol"]), list(symbols["description"])))
|
||||
self.searched_symbols[search] = symbol_list
|
||||
return symbol_list
|
||||
return symbols
|
||||
|
||||
def price_reply(self, symbols: list[Symbol]) -> list[str]:
|
||||
"""Returns current market price or after hours if its available for a given stock symbol.
|
||||
|
Loading…
x
Reference in New Issue
Block a user