1
0
mirror of https://gitlab.com/simple-stock-bots/simple-telegram-stock-bot.git synced 2025-06-16 15:06:53 +00:00

187 lines
7.3 KiB
Python

import json
import os
import re
from datetime import datetime, timedelta
import pandas as pd
import requests as r
from fuzzywuzzy import fuzz
class Symbol:
"""
Functions for finding stock market information about symbols.
"""
SYMBOL_REGEX = "[$]([a-zA-Z]{1,4})"
LIST_URL = "http://oatsreportable.finra.org/OATSReportableSecurities-SOD.txt"
def __init__(self, IEX_TOKEN: str):
self.IEX_TOKEN = IEX_TOKEN
self.symbol_list, self.symbol_ts = self.get_symbol_list()
def get_symbol_list(self):
"""
Fetches a list of stock market symbols from FINRA
Returns:
pd.DataFrame -- [DataFrame with columns: Symbol | Issue_Name | Primary_Listing_Mkt
datetime -- The time when the list of symbols was fetched. The Symbol list is updated every open and close of every trading day.
"""
raw_symbols = r.get(self.LIST_URL).text
symbols = pd.DataFrame(
[line.split("|") for line in raw_symbols.split("\n")][:-1]
)
symbols.columns = symbols.iloc[0]
symbols = symbols.drop(symbols.index[0])
symbols = symbols.drop(symbols.index[-1])
symbols["Description"] = symbols["Symbol"] + ": " + symbols["Issue_Name"]
return symbols, datetime.now()
def search_symbols(self, search: str):
"""
Performs a fuzzy search to find stock symbols closest to a search term.
Arguments:
search {str} -- String used to search, could be a company name or something close to the companies stock ticker.
Returns:
List of Tuples -- A list tuples of every stock sorted in order of how well they match. Each tuple contains: (Symbol, Issue Name).
"""
if self.symbol_ts - datetime.now() > timedelta(hours=12):
self.symbol_list, self.symbol_ts = self.get_symbol_list()
symbols = self.symbol_list
symbols["Match"] = symbols.apply(
lambda x: fuzz.ratio(search.lower(), f"{x['Symbol']}".lower()), axis=1,
)
symbols.sort_values(by="Match", ascending=False, inplace=True)
if symbols["Match"].head().sum() < 300:
symbols["Match"] = symbols.apply(
lambda x: fuzz.partial_ratio(search.lower(), x["Issue_Name"].lower()),
axis=1,
)
symbols.sort_values(by="Match", ascending=False, inplace=True)
return list(zip(list(symbols["Symbol"]), list(symbols["Description"])))
def find_symbols(self, text: str):
"""
Finds stock tickers starting with a dollar sign in a blob of text and returns them in a list. Only returns each match once. Example: Whats the price of $tsla? -> ['tsla']
Arguments:
text {str} -- Blob of text that might contain tickers with the format: $TICKER
Returns:
list -- List of every found match without the dollar sign.
"""
return list(set(re.findall(self.SYMBOL_REGEX, text)))
def price_reply(self, symbols: list):
"""
Takes a list of symbols and replies with Markdown formatted text about the symbols price change for the day.
Arguments:
symbols {list} -- List of stock market symbols.
Returns:
dict -- Dictionary with keys of symbols and values of markdown formatted text example: {'tsla': 'The current stock price of Tesla Motors is $**420$$, the stock price is currently **up 42%**}
"""
dataMessages = {}
for symbol in symbols:
IEXurl = f"https://cloud.iexapis.com/stable/stock/{symbol}/quote?token={self.IEX_TOKEN}"
response = r.get(IEXurl)
if response.status_code == 200:
IEXData = response.json()
message = f"The current stock price of {IEXData['companyName']} is $**{IEXData['latestPrice']}**"
# Determine wording of change text
change = round(IEXData["changePercent"] * 100, 2)
if change > 0:
message += f", the stock is currently **up {change}%**"
elif change < 0:
message += f", the stock is currently **down {change}%**"
else:
message += ", the stock hasn't shown any movement today."
else:
message = f"The symbol: {symbol} was not found."
dataMessages[symbol] = message
return dataMessages
def dividend_reply(self, symbols: list):
divMessages = {}
for symbol in symbols:
IEXurl = f"https://cloud.iexapis.com/stable/data-points/{symbol}/NEXTDIVIDENDDATE?token={self.IEX_TOKEN}"
response = r.get(IEXurl)
if response.status_code == 200:
# extract date from json
date = response.json()
# Pattern IEX uses for dividend date.
pattern = "%Y-%m-%d"
divDate = datetime.strptime(date, pattern)
daysDelta = (divDate - datetime.now()).days
datePretty = divDate.strftime("%A, %B %w")
if daysDelta < 0:
divMessages[
symbol
] = f"{symbol.upper()} dividend was on {datePretty} and a new date hasn't been announced yet."
elif daysDelta > 0:
divMessages[
symbol
] = f"{symbol.upper()} dividend is on {datePretty} which is in {daysDelta} Days."
else:
divMessages[symbol] = f"{symbol.upper()} is today."
else:
divMessages[
symbol
] = f"{symbol} either doesn't exist or pays no dividend."
return divMessages
def news_reply(self, symbols: list):
newsMessages = {}
for symbol in symbols:
IEXurl = f"https://cloud.iexapis.com/stable/stock/{symbol}/news/last/3?token={self.IEX_TOKEN}"
response = r.get(IEXurl)
if response.status_code == 200:
data = response.json()
newsMessages[symbol] = f"News for **{symbol.upper()}**:\n"
for news in data:
message = f"\t[{news['headline']}]({news['url']})\n\n"
newsMessages[symbol] = newsMessages[symbol] + message
else:
newsMessages[
symbol
] = f"No news found for: {symbol}\nEither today is boring or the symbol does not exist."
return newsMessages
def info_reply(self, symbols: list):
infoMessages = {}
for symbol in symbols:
IEXurl = f"https://cloud.iexapis.com/stable/stock/{symbol}/company?token={self.IEX_TOKEN}"
response = r.get(IEXurl)
if response.status_code == 200:
data = response.json()
infoMessages[
symbol
] = f"Company Name: [{data['companyName']}]({data['website']})\nIndustry: {data['industry']}\nSector: {data['sector']}\nCEO: {data['CEO']}\nDescription: {data['description']}\n"
else:
infoMessages[
symbol
] = f"No information found for: {symbol}\nEither today is boring or the symbol does not exist."
return infoMessages