1
0
mirror of https://gitlab.com/simple-stock-bots/simple-telegram-stock-bot.git synced 2025-06-16 15:06:53 +00:00
Simple-Telegram-Stock-Bot/searchindexer.ipynb

277 lines
19 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3.9.0 64-bit",
"metadata": {
"interpreter": {
"hash": "36cf16204b8548560b1c020c4e8fb5b57f0e4c58016f52f2d4be01e192833930"
}
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: tqdm in /home/anson/.local/lib/python3.8/site-packages (4.59.0)\n"
]
}
],
"source": [
"!pip install tqdm"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"import requests as r\n",
"import pandas as pd\n",
"from fuzzywuzzy import fuzz\n",
"from functools import cache\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
" def stocks():\n",
"\n",
" raw_symbols = r.get(\n",
" f\"https://cloud.iexapis.com/stable/ref-data/symbols?token=WOOOPS\"\n",
" ).json()\n",
" symbols = pd.DataFrame(data=raw_symbols)\n",
"\n",
" symbols[\"description\"] = \"$\" + symbols[\"symbol\"] + \": \" + symbols[\"name\"]\n",
" symbols[\"id\"] = symbols[\"symbol\"]\n",
"\n",
" symbols = symbols[[\"id\", \"symbol\", \"name\", \"description\"]]\n",
"\n",
" return symbols\n",
"\n",
"\n",
"\n",
" def coins():\n",
"\n",
" raw_symbols = r.get(\"https://api.coingecko.com/api/v3/coins/list\").json()\n",
" symbols = pd.DataFrame(data=raw_symbols)\n",
"\n",
" symbols[\"description\"] = \"$$\" + symbols[\"symbol\"] + \": \" + symbols[\"name\"]\n",
" symbols = symbols[[\"id\", \"symbol\", \"name\", \"description\"]]\n",
"\n",
" return symbols"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" id symbol \\\n",
"0 A A \n",
"1 AA AA \n",
"2 AAA AAA \n",
"3 AAAU AAAU \n",
"4 AAC AAC \n",
"... ... ... \n",
"6565 zyro zyro \n",
"6566 zytara-dollar zusd \n",
"6567 zyx zyx \n",
"6568 zzz-finance zzz \n",
"6569 zzz-finance-v2 zzzv2 \n",
"\n",
" name \\\n",
"0 Agilent Technologies Inc. \n",
"1 Alcoa Corp \n",
"2 Listed Funds Trust - AAF First Priority CLO Bo... \n",
"3 Goldman Sachs Physical Gold ETF Shares - Goldm... \n",
"4 Ares Acquisition Corporation - Class A \n",
"... ... \n",
"6565 Zyro \n",
"6566 Zytara Dollar \n",
"6567 ZYX \n",
"6568 zzz.finance \n",
"6569 zzz.finance v2 \n",
"\n",
" description \n",
"0 $A: Agilent Technologies Inc. \n",
"1 $AA: Alcoa Corp \n",
"2 $AAA: Listed Funds Trust - AAF First Priority ... \n",
"3 $AAAU: Goldman Sachs Physical Gold ETF Shares ... \n",
"4 $AAC: Ares Acquisition Corporation - Class A \n",
"... ... \n",
"6565 $$zyro: Zyro \n",
"6566 $$zusd: Zytara Dollar \n",
"6567 $$zyx: ZYX \n",
"6568 $$zzz: zzz.finance \n",
"6569 $$zzzv2: zzz.finance v2 \n",
"\n",
"[16946 rows x 4 columns]"
],
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>symbol</th>\n <th>name</th>\n <th>description</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>A</td>\n <td>A</td>\n <td>Agilent Technologies Inc.</td>\n <td>$A: Agilent Technologies Inc.</td>\n </tr>\n <tr>\n <th>1</th>\n <td>AA</td>\n <td>AA</td>\n <td>Alcoa Corp</td>\n <td>$AA: Alcoa Corp</td>\n </tr>\n <tr>\n <th>2</th>\n <td>AAA</td>\n <td>AAA</td>\n <td>Listed Funds Trust - AAF First Priority CLO Bo...</td>\n <td>$AAA: Listed Funds Trust - AAF First Priority ...</td>\n </tr>\n <tr>\n <th>3</th>\n <td>AAAU</td>\n <td>AAAU</td>\n <td>Goldman Sachs Physical Gold ETF Shares - Goldm...</td>\n <td>$AAAU: Goldman Sachs Physical Gold ETF Shares ...</td>\n </tr>\n <tr>\n <th>4</th>\n <td>AAC</td>\n <td>AAC</td>\n <td>Ares Acquisition Corporation - Class A</td>\n <td>$AAC: Ares Acquisition Corporation - Class A</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>6565</th>\n <td>zyro</td>\n <td>zyro</td>\n <td>Zyro</td>\n <td>$$zyro: Zyro</td>\n </tr>\n <tr>\n <th>6566</th>\n <td>zytara-dollar</td>\n <td>zusd</td>\n <td>Zytara Dollar</td>\n <td>$$zusd: Zytara Dollar</td>\n </tr>\n <tr>\n <th>6567</th>\n <td>zyx</td>\n <td>zyx</td>\n <td>ZYX</td>\n <td>$$zyx: ZYX</td>\n </tr>\n <tr>\n <th>6568</th>\n <td>zzz-finance</td>\n <td>zzz</td>\n <td>zzz.finance</td>\n <td>$$zzz: zzz.finance</td>\n </tr>\n <tr>\n <th>6569</th>\n <td>zzz-finance-v2</td>\n <td>zzzv2</td>\n <td>zzz.finance v2</td>\n <td>$$zzzv2: zzz.finance v2</td>\n </tr>\n </tbody>\n</table>\n<p>16946 rows × 4 columns</p>\n</div>"
},
"metadata": {},
"execution_count": 51
}
],
"source": [
"df = pd.concat([stocks(), coins()])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
" def search_symbols(search: str):\n",
" \"\"\"Performs a fuzzy search to find stock symbols closest to a search term.\n",
"\n",
" Parameters\n",
" ----------\n",
" search : str\n",
" String used to search, could be a company name or something close to the companies stock ticker.\n",
"\n",
" Returns\n",
" -------\n",
" List[tuple[str, str]]\n",
" A list tuples of every stock sorted in order of how well they match. Each tuple contains: (Symbol, Issue Name).\n",
" \"\"\"\n",
"\n",
" try:\n",
" if search_index[search]: return search_index[search]\n",
" except KeyError:\n",
" pass\n",
"\n",
"\n",
"\n",
" search = search.lower()\n",
"\n",
" df[\"Match\"] = df.apply(\n",
" lambda x: fuzz.ratio(search, f\"{x['symbol']}\".lower()),\n",
" axis=1,\n",
" )\n",
"\n",
" df.sort_values(by=\"Match\", ascending=False, inplace=True)\n",
" if df[\"Match\"].head().sum() < 300:\n",
" df[\"Match\"] = df.apply(\n",
" lambda x: fuzz.partial_ratio(search, x[\"name\"].lower()),\n",
" axis=1,\n",
" )\n",
"\n",
" df.sort_values(by=\"Match\", ascending=False, inplace=True)\n",
"\n",
" symbols = df.head(20)\n",
" symbol_list = list(zip(list(symbols[\"symbol\"]), list(symbols[\"description\"])))\n",
" \n",
" return symbol_list"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"search_list = df['id'].to_list() + df['description'].to_list()\n",
"search_index = {}"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
" 5%|▍ | 1545/33892 [06:51<2:23:40, 3.75it/s]\n"
]
},
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-92-559f57361529>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msearch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msearch_index\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msearch_symbols\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-79-2cfb15c9428a>\u001b[0m in \u001b[0;36msearch_symbols\u001b[0;34m(search)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0msearch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msearch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m df[\"Match\"] = df.apply(\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfuzz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mratio\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msearch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf\"{x['symbol']}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, func, axis, raw, result_type, args, **kwds)\u001b[0m\n\u001b[1;32m 7763\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7764\u001b[0m )\n\u001b[0;32m-> 7765\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7766\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7767\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapplymap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mna_action\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/apply.py\u001b[0m in \u001b[0;36mget_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_raw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_standard\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_empty_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/apply.py\u001b[0m in \u001b[0;36mapply_standard\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 274\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mapply_standard\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 276\u001b[0;31m \u001b[0mresults\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_series_generator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 277\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[0;31m# wrap results\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/apply.py\u001b[0m in \u001b[0;36mapply_series_generator\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 286\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0moption_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"mode.chained_assignment\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 288\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseries_gen\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 289\u001b[0m \u001b[0;31m# ignore SettingWithCopy here in case the user mutates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/apply.py\u001b[0m in \u001b[0;36mseries_generator\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 409\u001b[0m \u001b[0;31m# GH#35462 re-pin mgr in case setitem changed it\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 410\u001b[0;31m \u001b[0mser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmgr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 411\u001b[0m \u001b[0mblk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[0mser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.9/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__setattr__\u001b[0;34m(self, name, value)\u001b[0m\n\u001b[1;32m 5473\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5474\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5475\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5476\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5477\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"\n",
"for i in tqdm(search_list):\n",
" search_index[i] = search_symbols(i)"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"\n",
"\n",
"with open('search_index.pickle', 'wb') as handle:\n",
" pickle.dump(search_index, handle, protocol=pickle.HIGHEST_PROTOCOL)\n",
"\n",
"# with open('filename.pickle', 'rb') as handle:\n",
"# b = pickle.load(handle)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}