1
0
mirror of https://gitlab.com/lander-team/air-prop-simulation.git synced 2025-07-23 22:51:35 +00:00
Files
Air-Prop-Simulation/thrust.jl
2021-03-20 15:15:37 -07:00

73 lines
2.0 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Unitful
using DataFrames
using Plots
# using Gadfly
using UnitfulRecipes
using Roots
using CSV
using MonteCarloMeasurements
unsafe_comparisons(true)
# Tank https://www.amazon.com/Empire-Paintball-BASICS-Pressure-Compressed/dp/B07B6M48SR/
V = (85 ± 5)u"inch^3"
P0 = (4200.0 ± 300)u"psi"
Wtank = (2.3 ± 0.2)u"lb"
Pmax = (100 ± 5)u"psi"
Wsolenoid = 1.5u"kg"
# Params
d_nozzle = ((1 // 16) ± 0.001)u"inch"
a_nozzle = (pi / 4) * d_nozzle^2
Poutmax = (800 ± 50)u"psi"
# Universal Stuff
P_amb = (1 ± 0.2)u"atm"
γ = 1.4 ± 0.05
R = 287.05u"J/(kg * K)"
T = (300 ± 20)u"K"
# Setting up while loop
t = 0.0u"s"
P = P0 |> u"Pa"
M = V * (P / (R * T)) |> u"kg"
# df = DataFrame(Thrust = (0 ± 0)u"N", Pressure = P, Time = t, Mass = M)
df = DataFrame()
ts = 10u"ms"
while M > 0.1u"kg"
# while t < 30u"s"
# Calculate what is leaving tank
P = minimum([P, Pmax])
ve = sqrt((2 * γ / (γ - 1)) * R * T * (1 - P_amb / P)^((γ - 1) / γ)) |> u"m/s"
ρ = P / (R * T) |> u"kg/m^3"
= ρ * a_nozzle * ve |> u"kg/s"
Thrust = * ve + a_nozzle * (P - P_amb) |> u"N"
# Calculate what is still in the tank
M = M - * ts |> u"kg"
P = (M * R * T) / V |> u"Pa"
# df_step = DataFrame(Thrust = Thrust, Pressure = P, Time = t, Mass = M)
if df == DataFrame()
df = DataFrame(Thrust = Thrust, Pressure = P, Time = t, Mass = M)
else
append!(df, DataFrame(Thrust = Thrust, Pressure = P, Time = t, Mass = M))
end
t = t + ts
end
impulse = sum(df.Thrust) * ts |> u"N*s"
println("---------------------------\n\n\n\n")
println("Total Impulse: ", impulse)
println("Burn Time: ", t)
plot(impulse)
println("Mass Total: ", Wtank + Wsolenoid + maximum(df.Mass))
# plot(sum(df.Thrust) * ts |> u"N*s")
# print(describe(df))
# df.Time = round(u"s", df.Time)
# plot(df.Time, df.Thrust, title = "Thrust Over Time")
# CSV.write("thrustdata.csv", df .|> ustrip)
# plot(df.Time .|> u"s" .|> ustrip, df.Thrust .|> u"N" .|> ustrip)> ustrip, df.Thrust .|> u"N" .|> ustrip)