1
0
mirror of https://gitlab.com/lander-team/lander-cpp.git synced 2025-06-15 22:56:53 +00:00

Merge branch 'main' into '22-make-function-to-turn-test-stand-load-cells-into-thrust-vector'

# Conflicts:
#   .vscode/extensions.json
#   include/teensy.h
#   src/main.cpp
This commit is contained in:
Anson Biggs 2021-11-12 20:46:35 +00:00
commit f7c34b6c8c
9 changed files with 285 additions and 138 deletions

View File

@ -1,10 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"ms-vscode.cpptools",
"platformio.platformio-ide",
"usernamehw.errorlens",
"wayou.vscode-todo-highlight"
]
}
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"ms-vscode.cpptools",
"platformio.platformio-ide",
"usernamehw.errorlens",
"wayou.vscode-todo-highlight"
]
}

View File

@ -45,7 +45,8 @@
"string": "cpp",
"chrono": "cpp",
"ratio": "cpp",
"thread": "cpp"
"thread": "cpp",
"string_view": "cpp"
},
"C_Cpp.clang_format_fallbackStyle": "LLVM",
"editor.formatOnSave": true,

View File

@ -20,7 +20,7 @@ struct Vehicle {
double burntime;
double burnVelocity;
double thrust, burnElapsed, burnStart;
bool thrustFiring = false;
int thrustFiring = 0; // 0: Pre-burn, 1: Mid-burn, 2: Post-burn
double PIDx, PIDy, Fx, Fy, Fz;
double momentX, momentY, momentZ;
@ -28,47 +28,47 @@ struct Vehicle {
double I11, I22, I33;
double I11dot, I22dot, I33dot;
int maxServo;
int maxServoRate;
double maxServo;
double maxServoRate;
double xServoDegs, yServoDegs;
double xServoDegsDot, yServoDegsDot;
double Kp, Ki, Kd;
double yError, yPrevError;
double pError, pPrevError;
double i_yError, i_pError = 0;
double i_yError, i_pError = 0.0;
double d_yError, d_pError;
double simTime;
int stepSize;
double stepSize;
int time = 0;
double time = 0.0;
};
void init_Vehicle(Vehicle &State) {
// PID Gains
State.Kp = -6.8699;
State.Ki = 0;
State.Ki = 0.0;
State.Kd = -0.775;
// Initial Velocity
State.vx = 0; // [m/s]
State.vy = 0; // [m/s]
State.vz = 0; // [m/s]
State.vx = 0.0; // [m/s]
State.vy = 0.0; // [m/s]
State.vz = 0.0; // [m/s]
// Initial YPR
State.yaw = 45 * M_PI / 180; // [rad]
State.pitch = 45 * M_PI / 180; // [rad]
State.roll = 0 * M_PI / 180; // [rad]
State.yaw = 45.0 * M_PI / 180.0; // [rad]
State.pitch = 45.0 * M_PI / 180.0; // [rad]
State.roll = 0.0 * M_PI / 180.0; // [rad]
// Initial YPRdot
State.yawdot = 1 * M_PI / 180; // [rad/s]
State.pitchdot = -1 * M_PI / 180; // [rad/s]
State.rolldot = 0 * M_PI / 180; // [rad/s]
State.yawdot = 1.0 * M_PI / 180.0; // [rad/s]
State.pitchdot = -1.0 * M_PI / 180.0; // [rad/s]
State.rolldot = 0.0 * M_PI / 180.0; // [rad/s]
// Servo Limitation
State.maxServo = 7; // [degs]
State.maxServoRate = 360; // [degs/sec]
State.maxServo = 7.0; // [degs]
State.maxServoRate = 360.0; // [degs/sec]
// Vehicle Properties
State.massInitial = 1.2; // [kg]
@ -77,7 +77,7 @@ void init_Vehicle(Vehicle &State) {
State.momentArm = 0.145; // [m]
// Sim Step Size
State.stepSize = 1; // [ms]
State.stepSize = 1.0; // [ms]
// Other Properties
State.massPropellant = 0.06; // [kg]

View File

@ -8,41 +8,23 @@ void write2CSV(struct outVector &, struct Vehicle &);
void printSimResults(struct Vehicle &);
void thrustInfo(Vehicle &State) {
if (State.burnElapsed != 2000) {
// determine where in the thrust curve we're at based on elapsed burn time
// as well as current mass
State.burnElapsed = (State.time - State.burnStart) / 1000;
State.mass = State.massInitial - (State.mdot * State.burnElapsed);
}
else if (abs(State.burnVelocity + State.vz) < 0.001) {
if ((std::abs(State.burnVelocity + State.vz) < 1.03) &&
(State.thrustFiring == 0)) {
// Start burn
State.burnStart = State.time;
State.burnElapsed = 0;
}
State.burnElapsed = 0.0;
State.thrustFiring = 1;
else
State.burnElapsed = 2000; // arbitrary number to ensure we don't burn
getThrust(State);
if ((State.burnElapsed > 0.147) && (State.burnElapsed < 0.420)) {
State.thrustFiring = true;
State.thrust = 65.165 * State.burnElapsed - 2.3921;
} else if (State.thrustFiring == 1) {
State.burnElapsed = (State.time - State.burnStart) / 1000.0;
State.mass = State.massInitial - (State.mdot * State.burnElapsed);
} else if ((State.burnElapsed > 0.419) && (State.burnElapsed < 3.383))
State.thrust = 0.8932 * pow(State.burnElapsed, 6) -
11.609 * pow(State.burnElapsed, 5) +
60.739 * pow(State.burnElapsed, 4) -
162.99 * pow(State.burnElapsed, 3) +
235.6 * pow(State.burnElapsed, 2) -
174.43 * State.burnElapsed + 67.17;
getThrust(State);
else if ((State.burnElapsed > 3.382) && (State.burnElapsed < 3.46))
State.thrust = -195.78 * State.burnElapsed - 675.11;
if (State.burnElapsed > 3.45) {
State.thrustFiring = false;
State.thrust = 0;
} else {
State.thrust = 0.0;
}
}
@ -117,6 +99,10 @@ void write2CSV(outVector &stateVector, Vehicle &State) {
}
void printSimResults(Vehicle &State) {
State.yaw = State.yaw * 180 / M_PI;
State.pitch = State.pitch * 180 / M_PI;
State.roll = State.roll * 180 / M_PI;
double landing_angle =
pow(State.yaw * State.yaw + State.pitch * State.pitch, .5);

View File

@ -4,11 +4,7 @@
#define OUTVECTOR_H
struct outVector {
#if defined(NATIVE) || defined(_WIN32)
int length = 100000; // current sim runs ~5000 steps, x2 just in case
#elif defined(TEENSY)
int length = 1000; // current sim runs ~5000 steps, x2 just in case
#endif
int length = 10000; // current sim runs ~5000 steps, x2 just in case
std::vector<double> x = std::vector<double>(length, 0.0);
std::vector<double> y = std::vector<double>(length, 0.0);

View File

@ -11,6 +11,7 @@ void state2vec(struct Vehicle &, struct Vehicle &, struct outVector &);
double derivative(double current, double previous, double step);
double integral(double currentChange, double prevValue, double dt);
double limit(double value, double upr, double lwr);
void getThrust(struct Vehicle &);
// Any parameters that are constants should be declared here instead of
// buried in code
@ -19,7 +20,7 @@ double const g = -9.81;
void burnStartTimeCalc(Vehicle &State) {
double velocity = State.vz;
double h = 0;
double h = 0.0;
double mass, thrust;
@ -37,39 +38,39 @@ void burnStartTimeCalc(Vehicle &State) {
else if ((i > 3.382) && (i < 3.46))
thrust = -195.78 * i + 675.11;
else
thrust = 0;
thrust = 0.0;
velocity = (((thrust / mass) + g) * dt) + velocity;
h = (((thrust / mass) + g) * dt) + h;
}
State.z = h + (pow(velocity, 2) / (2 * -g)); // starting height
State.z = 18.9;
State.z = h + (pow(velocity, 2) / (2.0 * -g)); // starting height
State.z = 19.05;
State.burnVelocity = velocity; // terminal velocity
double burnStartTime = State.burnVelocity / -g;
State.simTime = (State.burntime + burnStartTime) * 1000;
State.simTime = (State.burntime + burnStartTime) * 1000.0;
}
void vehicleDynamics(Vehicle &State, Vehicle &PrevState) {
// Moment of Inertia
State.I11 = State.mass * ((1 / 12) * pow(State.vehicleHeight, 2) +
pow(State.vehicleRadius, 2) / 4);
State.I22 = State.mass * ((1 / 12) * pow(State.vehicleHeight, 2) +
pow(State.vehicleRadius, 2) / 4);
State.I11 = State.mass * ((1 / 12.0) * pow(State.vehicleHeight, 2) +
pow(State.vehicleRadius, 2) / 4.0);
State.I22 = State.mass * ((1 / 12.0) * pow(State.vehicleHeight, 2) +
pow(State.vehicleRadius, 2) / 4.0);
State.I33 = State.mass * 0.5 * pow(State.vehicleRadius, 2);
// Idot
if (State.time < 0.1) {
State.I11dot = 0;
State.I22dot = 0;
State.I33dot = 0;
State.I11dot = 0.0;
State.I22dot = 0.0;
State.I33dot = 0.0;
State.x = 0;
State.y = 0;
State.x = 0.0;
State.y = 0.0;
State.ax = 0;
State.ay = 0;
State.ax = 0.0;
State.ay = 0.0;
State.az = State.Fz / State.massInitial;
} else {
@ -145,7 +146,6 @@ void pidController(Vehicle &State, struct Vehicle &PrevState) {
State.d_pError = derivative(State.pError, PrevState.pError, State.stepSize);
// TVC block properly
State.PIDx = (State.Kp * State.yError + State.Ki * State.i_yError +
State.Kd * State.d_yError) /
State.momentArm;
@ -154,8 +154,8 @@ void pidController(Vehicle &State, struct Vehicle &PrevState) {
State.momentArm;
} else {
State.PIDx = 0;
State.PIDy = 0;
State.PIDx = 0.0;
State.PIDy = 0.0;
}
// PID Force Limiter
@ -166,18 +166,18 @@ void pidController(Vehicle &State, struct Vehicle &PrevState) {
void TVC(Vehicle &State, Vehicle &PrevState) {
if (State.thrust < 0.1) {
// Define forces and moments for t = 0
State.Fx = 0;
State.Fy = 0;
State.Fx = 0.0;
State.Fy = 0.0;
State.Fz = g * State.massInitial;
State.momentX = 0;
State.momentY = 0;
State.momentZ = 0;
State.momentX = 0.0;
State.momentY = 0.0;
State.momentZ = 0.0;
} else {
// Convert servo position to degrees for comparison to max allowable
State.xServoDegs = (180 / M_PI) * asin(State.PIDx / State.thrust);
State.yServoDegs = (180 / M_PI) * asin(State.PIDy / State.thrust);
State.xServoDegs = (180.0 / M_PI) * asin(State.PIDx / State.thrust);
State.yServoDegs = (180.0 / M_PI) * asin(State.PIDy / State.thrust);
// Limit Servo Position
State.xServoDegs = limit(State.xServoDegs, State.maxServo, -State.maxServo);
@ -235,18 +235,15 @@ void state2vec(Vehicle &State, Vehicle &PrevState, outVector &stateVector) {
stateVector.PIDy[t] = State.PIDy;
stateVector.thrust[t] = State.thrust;
// Set "prev" values for next timestep
PrevState = State;
}
double derivative(double current, double previous, double step) {
double dxdt = (current - previous) / (step / 1000);
double dxdt = (current - previous) / (step / 1000.0);
return dxdt;
}
double integral(double currentChange, double prevValue, double dt) {
return (currentChange * dt / 1000) + prevValue;
return (currentChange * dt / 1000.0) + prevValue;
}
double limit(double value, double upr, double lwr) {
@ -258,4 +255,26 @@ double limit(double value, double upr, double lwr) {
value = value;
return value;
}
void getThrust(Vehicle &State) {
if ((State.burnElapsed > 0.147) && (State.burnElapsed < 0.420)) {
State.thrust = 65.165 * State.burnElapsed - 2.3921;
} else if ((State.burnElapsed > 0.419) && (State.burnElapsed < 3.383))
State.thrust = 0.8932 * pow(State.burnElapsed, 6.0) -
11.609 * pow(State.burnElapsed, 5.0) +
60.739 * pow(State.burnElapsed, 4.0) -
162.99 * pow(State.burnElapsed, 3.0) +
235.6 * pow(State.burnElapsed, 2.0) -
174.43 * State.burnElapsed + 67.17;
else if ((State.burnElapsed > 3.382) && (State.burnElapsed < 3.46)) {
State.thrust = -195.78 * State.burnElapsed + 675.11;
}
if (State.burnElapsed > 3.45) {
State.thrustFiring = 2;
State.thrust = 0.0;
}
}

View File

@ -1,49 +1,105 @@
#include "Vehicle.h"
#include <Arduino.h>
#include <SD.h>
#include <SPI.h>
double loadCellCalibrate();
void initFile();
void thrustInfo(struct Vehicle &);
void processTVC(struct LoadCells &);
void write2CSV(struct outVector &, struct Vehicle &);
void processTVC(struct Vehicle &);
void write2CSV(struct Vehicle &);
void printSimResults(struct Vehicle &);
void teensyAbort();
const int chipSelect = BUILTIN_SDCARD;
File dataFile;
double loadCellCalibrate() {
// place code to calibrate load cells in here
double loadTotal;
for (double t = 0.0; t == 10.0; ++t) {
loadTotal += 1.0;
delay(15);
}
return loadTotal / 10.0;
}
void initFile() {
Serial.print("Initializing SD card...");
// see if the card is present and can be initialized:
if (!SD.begin(chipSelect)) {
Serial.println("Card failed, or not present. \n\nABORTING SIMULATION");
teensyAbort();
}
Serial.println("Card initialized.");
int i = 1;
const char *fileName;
if (SD.exists("simOut.csv")) {
while (i > 0.0) {
fileName = ("simOut_" + String(i) + ".csv").c_str();
if (!SD.exists(fileName)) {
// Open simOut_i.csv
dataFile = SD.open(fileName, FILE_WRITE);
if (dataFile) {
Serial.println("File successfully opened!");
} else {
// if the file didn't open, print an error:
Serial.println("Error opening output file. \n\nABORTING SIMULATION");
teensyAbort();
}
i = 0.0;
} else {
i++;
}
}
} else {
// Open simOut.csv
dataFile = SD.open("simOut.csv", FILE_WRITE);
if (dataFile) {
Serial.println("File successfully opened!");
} else {
// if the file didn't open, print an error:
Serial.println("Error opening output file. \n\nABORTING SIMULATION");
teensyAbort();
}
}
// File Header
dataFile.println(
"t,x,y,z,vx,vy,vz,ax,ay,az,yaw,pitch,roll,yawdot,pitchdot,rolldot,"
"Servo1,Servo2,thrustFiring,PIDx,PIDy,thrust");
}
void thrustInfo(Vehicle &State) {
if (State.time == 0) {
Serial.println("WARNING: thrustInfo not implemented for TEENSY");
}
if (State.burnElapsed != 2000) {
// determine where in the thrust curve we're at based on elapsed burn time
// as well as current mass
State.burnElapsed = (State.time - State.burnStart) / 1000;
State.mass = State.massInitial - (State.mdot * State.burnElapsed);
}
else if (abs(State.burnVelocity + State.vz) < 0.001) {
if ((abs(State.burnVelocity + State.vz) < 1.03) &&
(State.thrustFiring == 0)) {
// Start burn
State.burnStart = State.time;
State.burnElapsed = 0;
}
State.burnElapsed = 0.0;
State.thrustFiring = 1;
else
State.burnElapsed = 2000; // arbitrary number to ensure we don't burn
getThrust(State);
if ((State.burnElapsed > 0.147) && (State.burnElapsed < 0.420)) {
State.thrustFiring = true;
State.thrust = 65.165 * State.burnElapsed - 2.3921;
} else if (State.thrustFiring == 1) {
State.burnElapsed = (State.time - State.burnStart) / 1000.0;
State.mass = State.massInitial - (State.mdot * State.burnElapsed);
} else if ((State.burnElapsed > 0.419) && (State.burnElapsed < 3.383))
State.thrust = 0.8932 * pow(State.burnElapsed, 6) -
11.609 * pow(State.burnElapsed, 5) +
60.739 * pow(State.burnElapsed, 4) -
162.99 * pow(State.burnElapsed, 3) +
235.6 * pow(State.burnElapsed, 2) -
174.43 * State.burnElapsed + 67.17;
getThrust(State);
else if ((State.burnElapsed > 3.382) && (State.burnElapsed < 3.46))
State.thrust = -195.78 * State.burnElapsed - 675.11;
if (State.burnElapsed > 3.45) {
State.thrustFiring = false;
State.thrust = 0;
} else {
State.thrust = 0.0;
}
}
@ -63,15 +119,70 @@ void processTVC(Vehicle &State, LoadCells &loadCells) {
// Calculate moment created by Fx and Fy
State.momentX = State.Fx * State.momentArm;
State.momentY = State.Fy * State.momentArm;
State.momentZ = 0;
State.momentZ = 0.0;
}
void write2CSV(outVector &stateVector, Vehicle &State) {
void write2CSV(Vehicle &State) {
dataFile.print(String(State.time, 5));
dataFile.print(",");
Serial.println("WARNING: write2CSV not implemented for TEENSY");
dataFile.print(String(State.x, 5));
dataFile.print(",");
dataFile.print(String(State.y, 5));
dataFile.print(",");
dataFile.print(String(State.z, 5));
dataFile.print(",");
dataFile.print(String(State.vx, 5));
dataFile.print(",");
dataFile.print(String(State.vy, 5));
dataFile.print(",");
dataFile.print(String(State.vz, 5));
dataFile.print(",");
dataFile.print(String(State.ax, 5));
dataFile.print(",");
dataFile.print(String(State.ay, 5));
dataFile.print(",");
dataFile.print(String(State.az, 5));
dataFile.print(",");
dataFile.print(String(State.yaw * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.pitch * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.roll * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.yawdot * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.pitchdot * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.rolldot * 180.0 / M_PI, 5));
dataFile.print(",");
dataFile.print(String(State.xServoDegs, 5));
dataFile.print(",");
dataFile.print(String(State.yServoDegs, 5));
dataFile.print(",");
dataFile.print(String(State.thrustFiring, 5));
dataFile.print(",");
dataFile.print(String(State.PIDx, 5));
dataFile.print(",");
dataFile.print(String(State.PIDy, 5));
dataFile.print(",");
dataFile.print(String(State.thrust, 5));
dataFile.print("\n");
}
void printSimResults(Vehicle &State) {
State.yaw = State.yaw * 180.0 / M_PI;
State.pitch = State.pitch * 180.0 / M_PI;
State.roll = State.roll * 180.0 / M_PI;
double landing_angle =
pow(State.yaw * State.yaw + State.pitch * State.pitch, .5);
@ -94,5 +205,20 @@ void printSimResults(Vehicle &State) {
Serial.print("Final Velocity: [" + String(State.vx) + ", " +
String(State.vy) + ", " + String(State.vz) + "]\n");
Serial.print("\n\nSimulation Complete\n");
Serial.print("\nSimulation Complete\n");
}
void closeFile() {
// close the file:
dataFile.close();
Serial.println("File closed\n");
}
void teensyAbort() {
while (1) {
digitalWrite(BUILTIN_LED, HIGH);
delay(1000);
digitalWrite(BUILTIN_LED, LOW);
delay(1000);
}
}

View File

@ -30,6 +30,7 @@ Servo2 = T(:, 18);
PIDx = T(:, 20);
PIDy = T(:, 21);
thrust = T(:, 22);
% Acceleration
subplot(3, 1, 1)
plot(t, az)
@ -91,3 +92,12 @@ plot(t, Servo2)
title('Servo 2 Position vs Time')
xlabel('Time (ms)')
ylabel('Servo 2 Position (rad)')
figure(4)
% Servo 1 Position
plot(t, thrust)
title('Thrust vs Time')
xlabel('Time (ms)')
ylabel('Thrust (N)')

View File

@ -10,6 +10,8 @@
#include <vector>
#elif defined(TEENSY)
#include <Arduino.h>
int BUILTIN_LED = 13;
unsigned long last;
#endif
@ -18,6 +20,7 @@ unsigned long last;
#if defined(NATIVE) || defined(_WIN32)
#include "native.h"
outVector stateVector;
#elif defined(TEENSY)
#include "LoadCells.h"
@ -35,7 +38,6 @@ const int lc_data_3 = 3;
Vehicle State;
Vehicle PrevState;
outVector stateVector;
#if defined(NATIVE) || defined(_WIN32)
void setup() {
@ -71,6 +73,8 @@ void setup() {
Serial.println("Load Cells Calibrated");
delay(1000);
initFile();
delay(1000);
}
#endif
@ -83,9 +87,11 @@ void loop() {
processTVC(State);
state2vec(State, PrevState, stateVector);
// Set "prev" values for next timestep
PrevState = State;
State.time += State.stepSize;
if (State.z < 0.0) {
if ((State.z < 0.0) && (State.thrustFiring == 2)) {
write2CSV(stateVector, State);
printSimResults(State);
init_Vehicle(State);
@ -93,6 +99,7 @@ void loop() {
}
#elif defined(TEENSY)
void loop() {
last = millis();
vehicleDynamics(State, PrevState);
thrustInfo(State);
@ -103,14 +110,16 @@ void loop() {
State.time += State.stepSize;
if (State.z < 0.0) {
write2CSV(stateVector, State);
if ((State.z < 0.0) && (State.thrustFiring == 2)) {
printSimResults(State);
init_Vehicle(State);
Serial.println("Last run duration:" + String(millis() - last + " ms"));
Serial.println("Run duration:" + String(millis() - last) + " ms");
delay(1000);
Serial.println("Restarting Sim");
closeFile();
delay(20000);
Serial.println("SUCCESS");
Serial.println("Aborting Sim");
teensyAbort();
}
}
#endif
@ -122,7 +131,7 @@ int main() {
do {
loop();
} while ((State.z > 0.0));
} while ((State.z > 0.0) || (State.thrustFiring != 2));
return 0;
}