1
0
mirror of https://gitlab.com/MisterBiggs/SADC.jl.git synced 2025-07-27 16:41:32 +00:00

Simulink 2 fully implemented #3

This commit is contained in:
2021-08-02 02:43:34 -07:00
parent b26f2def15
commit aeb8b828f5
4 changed files with 112 additions and 11 deletions

BIN
DancingT.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -1,15 +1,14 @@
export Quaternion
struct Quaternion
i::Float64
j::Float64
k::Float64
r::Float64
# TODO: Determine an acceptable tolerance. ≈ default is too strict.
Quaternion(i, j, k, r) =
norm([i, j, k, r]) 1 ? new(i, j, k, r) : error("Magnitude not equal to 1.")
abs(norm([i, j, k, r]) - 1) < 0.1 ? new(i, j, k, r) :
error("Magnitude not equal to 1: " * string(norm([i, j, k, r])))
Quaternion(q) = Quaternion(q[1], q[2], q[3], q[4])
Quaternion() = new(0, 0, 0, 1)
@@ -52,3 +51,42 @@ Base.isapprox(a::Quaternion, b::Quaternion) = isapprox(collect(a), collect(b))
LinearAlgebra.norm(q::Quaternion) = norm(collect(q))
LinearAlgebra.normalize(q::Quaternion) = collect(q) / norm(q)
# I dont think we need an actual type for this it might just be easier to keep it as a Vector or something.
# struct EulerAngles
# roll::Float64
# pitch::Float64
# yaw::Float64
# EulerAngles(r, p, y) = new(r, p, y)
# EulerAngles() = new(0.0, 0.0, 0.0)
# end
function q_to_Euler(q::Quaternion)
# https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Source_code_2
# roll (x-axis rotation)
sinr_cosp = 2 * (q.r * q.i + q.j * q.k)
cosr_cosp = 1 - 2 * (q.i * q.i + q.j * q.j)
roll = atan(sinr_cosp, cosr_cosp)
# pitch (y-axis rotation)
sinp = 2 * (q.r * q.j - q.k * q.i)
if (abs(sinp) >= 1)
pitch = copysign(π / 2, sinp) # use 90 degrees if out of range
else
pitch = asin(sinp)
end
# yaw (z-axis rotation)
siny_cosp = 2 * (q.r * q.k + q.i * q.j)
cosy_cosp = 1 - 2 * (q.j * q.j + q.k * q.k)
yaw = atan(siny_cosp, cosy_cosp)
# return EulerAngles(roll, pitch, yaw)
return (roll = rad2deg(roll), pitch = rad2deg(pitch), yaw = rad2deg(yaw))
# return (roll = roll, pitch = pitch, yaw = yaw)
end

View File

@@ -1,2 +1,3 @@
# SADC.Jl
![](DancingT.png)

74
SADC.jl
View File

@@ -1,19 +1,24 @@
using LinearAlgebra
using NumericalIntegration
include("Quaternions.jl")
dt = 0.005
time = 0.0:dt:100
I = [3 0 0; 0 4 0; 0 0 2]
T = [0; 0; 0]
dt = 0.005
ω₀ = [2.001; 0.001; 0.001]
q₀ = [0; 0; 0; 1]
ω = [2.001; 0.001; 0.001]
q = Quaternion([0; 0; 0; 1])
ω_last = [0; 0; 0; ω]
ω_temp = similar(ω_last)
integrate_ω(T, I, ω) = inv(I) * (T - cross(ω, I * ω))
integrate_ω(T, I, ω₀)
function q_step(β)
mag = β .^ 2 |> sum |> sqrt
@@ -21,3 +26,60 @@ function q_step(β)
end
function integrate_vector(v, v_last)
v_new = similar(v)
for i = 1:length(v)
v_new[i] = integrate([0, dt], [v_last[i], v[i]])
end
return v_new
end
yaw = []
pitch = []
roll = []
for t in time
ω′ = integrate_ω(T, I, ω)
ω_new = integrate_vector([ω; ω′], ω_last)
ω = ω_new[4:6]
β = ω_new[1:3] .- ω
q = q * q_step(β)
y, p, r = q_to_Euler(q)
push!(yaw, y)
push!(pitch, p)
push!(roll, r)
end
# Plot
# using Plots
# let
# plot(time, yaw, label = "Yaw")
# plot!(time, pitch, label = "Pitch")
# plot!(time, roll, label = "Roll")
# title!("Dancing T Handle")
# xlabel!("Seconds")
# ylabel!("Degrees")
# savefig("DancingT.png")
# end
# Write to CSV
# using CSV
# using DataFrames
# ts = 100
# df = DataFrame(
# time = time[1:ts:end],
# yaw = yaw[1:ts:end],
# roll = roll[1:ts:end],
# pitch = pitch[1:ts:end],
# )
# CSV.write("ypr.csv", df, header = false)
# df