mirror of
https://gitlab.com/MisterBiggs/stl-process.git
synced 2025-08-03 03:51:27 +00:00
new volume function based on mass props
This commit is contained in:
@@ -16,43 +16,6 @@ struct Properties
|
||||
end
|
||||
end
|
||||
|
||||
function get_volume(triangles; scale=1)
|
||||
"""
|
||||
Reference:
|
||||
https://people.eecs.berkeley.edu/~wkahan/VtetLang.pdf
|
||||
"""
|
||||
|
||||
volume = 0.0
|
||||
for tri in triangles
|
||||
a, b, c = tri .* scale
|
||||
|
||||
W = sqrt(sum((a .- b) .^ 2))
|
||||
V = sqrt(sum((b .- c) .^ 2))
|
||||
U = sqrt(sum((c .- a) .^ 2))
|
||||
|
||||
v = sqrt(sum(a .^ 2))
|
||||
u = sqrt(sum(b .^ 2))
|
||||
w = sqrt(sum(c .^ 2))
|
||||
|
||||
X = (w - U + v) * (U + v + w)
|
||||
Y = (u - V + w) * (V + w + u)
|
||||
Z = (v - W + u) * (W + u + v)
|
||||
|
||||
x = (U - v + w) * (v - w + U)
|
||||
y = (V - w + u) * (w - u + V)
|
||||
z = (W - u + v) * (u - v + W)
|
||||
|
||||
ξ = sqrt(x * Y * Z)
|
||||
η = sqrt(y * Z * X)
|
||||
ζ = sqrt(z * X * Y)
|
||||
λ = sqrt(x * y * z)
|
||||
|
||||
volume += sqrt((ξ + η + ζ - λ) * (λ + ξ + η - ζ) * (η + ζ + λ - ξ) * (ζ + λ + ξ - η)) / (192 * u * v * w)
|
||||
end
|
||||
|
||||
return volume
|
||||
end
|
||||
|
||||
function get_mass_properties(triangles; scale=1)
|
||||
"""
|
||||
Reference:
|
||||
@@ -113,6 +76,34 @@ function get_mass_properties(triangles; scale=1)
|
||||
return Properties(volume, center_of_gravity, inertia)
|
||||
end
|
||||
|
||||
export get_mass_properties, get_volume
|
||||
function fast_volume(triangles; scale=1)
|
||||
"""
|
||||
Faster algorithm to get volume of mesh. Is just `get_mass_properties` without any calculations not relevant to volume.
|
||||
|
||||
Reference:
|
||||
https://github.com/WoLpH/numpy-stl/blob/42b6c67324e13b8712af6730f77e5e9544ef63b0/stl/base.py#L362
|
||||
https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf
|
||||
"""
|
||||
x = reduce(hcat, [[v[1] .* scale for v in tri] for tri in triangles])'
|
||||
y = reduce(hcat, [[v[2] .* scale for v in tri] for tri in triangles])'
|
||||
z = reduce(hcat, [[v[3] .* scale for v in tri] for tri in triangles])'
|
||||
|
||||
w0, w1, w2 = x[:, 1], x[:, 2], x[:, 3]
|
||||
temp0 = w0 + w1
|
||||
f1 = temp0 + w2
|
||||
|
||||
x0, x1, x2 = x[:, 1], x[:, 2], x[:, 3]
|
||||
y0, y1, y2 = y[:, 1], y[:, 2], y[:, 3]
|
||||
z0, z1, z2 = z[:, 1], z[:, 2], z[:, 3]
|
||||
a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0
|
||||
a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0
|
||||
d0, d1, d2 = b1 .* c2 .- b2 .* c1, a2 .* c1 .- a1 .* c2, a1 .* b2 .- a2 .* b1
|
||||
|
||||
volume = sum(d0 .* f1) / 6
|
||||
|
||||
return volume
|
||||
end
|
||||
|
||||
export get_mass_properties, fast_volume
|
||||
|
||||
end # module
|
||||
|
@@ -7,6 +7,44 @@ using MeshIO
|
||||
|
||||
using LinearAlgebra
|
||||
|
||||
function _check_volume(triangles; scale=1)
|
||||
"""
|
||||
Slow algorithm just used to test the other algorithms
|
||||
Reference:
|
||||
https://people.eecs.berkeley.edu/~wkahan/VtetLang.pdf
|
||||
"""
|
||||
|
||||
volume = 0.0
|
||||
for tri in triangles
|
||||
a, b, c = tri .* scale
|
||||
|
||||
W = sqrt(sum((a .- b) .^ 2))
|
||||
V = sqrt(sum((b .- c) .^ 2))
|
||||
U = sqrt(sum((c .- a) .^ 2))
|
||||
|
||||
v = sqrt(sum(a .^ 2))
|
||||
u = sqrt(sum(b .^ 2))
|
||||
w = sqrt(sum(c .^ 2))
|
||||
|
||||
X = (w - U + v) * (U + v + w)
|
||||
Y = (u - V + w) * (V + w + u)
|
||||
Z = (v - W + u) * (W + u + v)
|
||||
|
||||
x = (U - v + w) * (v - w + U)
|
||||
y = (V - w + u) * (w - u + V)
|
||||
z = (W - u + v) * (u - v + W)
|
||||
|
||||
ξ = sqrt(x * Y * Z)
|
||||
η = sqrt(y * Z * X)
|
||||
ζ = sqrt(z * X * Y)
|
||||
λ = sqrt(x * y * z)
|
||||
|
||||
volume += sqrt((ξ + η + ζ - λ) * (λ + ξ + η - ζ) * (η + ζ + λ - ξ) * (ζ + λ + ξ - η)) / (192 * u * v * w)
|
||||
end
|
||||
|
||||
return volume
|
||||
end
|
||||
|
||||
@testset "simple cube stl" begin
|
||||
"""
|
||||
inertia math:
|
||||
@@ -25,14 +63,14 @@ using LinearAlgebra
|
||||
@test all(eigvals(props.inertia) .≈ (5.0 + 1 / 3))
|
||||
|
||||
@testset "get_volume function" begin
|
||||
@test get_volume(stl; scale=1) ≈ props.volume rtol = 0.01
|
||||
@test get_volume(stl; scale=4) ≈ (4 * 2)^3 rtol = 0.01
|
||||
@test _check_volume(stl; scale=1) ≈ props.volume rtol = 0.01
|
||||
@test _check_volume(stl; scale=4) ≈ (4 * 2)^3 rtol = 0.01
|
||||
end
|
||||
end
|
||||
@testset "Compare volumes with scaling" begin
|
||||
for scale in 1:5
|
||||
props = get_mass_properties(stl; scale=scale)
|
||||
volume = get_volume(stl; scale=scale)
|
||||
volume = _check_volume(stl; scale=scale)
|
||||
|
||||
@test props.volume ≈ volume rtol = 0.01
|
||||
end
|
||||
|
Reference in New Issue
Block a user