1
0
mirror of https://gitlab.com/MisterBiggs/stl-process.git synced 2025-08-03 12:01:33 +00:00

new volume function based on mass props

This commit is contained in:
2022-03-31 10:12:47 -07:00
parent 04e7fef7ad
commit 2fd254e08d
2 changed files with 70 additions and 41 deletions

View File

@@ -16,43 +16,6 @@ struct Properties
end end
end end
function get_volume(triangles; scale=1)
"""
Reference:
https://people.eecs.berkeley.edu/~wkahan/VtetLang.pdf
"""
volume = 0.0
for tri in triangles
a, b, c = tri .* scale
W = sqrt(sum((a .- b) .^ 2))
V = sqrt(sum((b .- c) .^ 2))
U = sqrt(sum((c .- a) .^ 2))
v = sqrt(sum(a .^ 2))
u = sqrt(sum(b .^ 2))
w = sqrt(sum(c .^ 2))
X = (w - U + v) * (U + v + w)
Y = (u - V + w) * (V + w + u)
Z = (v - W + u) * (W + u + v)
x = (U - v + w) * (v - w + U)
y = (V - w + u) * (w - u + V)
z = (W - u + v) * (u - v + W)
ξ = sqrt(x * Y * Z)
η = sqrt(y * Z * X)
ζ = sqrt(z * X * Y)
λ = sqrt(x * y * z)
volume += sqrt((ξ + η + ζ - λ) * (λ + ξ + η - ζ) * (η + ζ + λ - ξ) * (ζ + λ + ξ - η)) / (192 * u * v * w)
end
return volume
end
function get_mass_properties(triangles; scale=1) function get_mass_properties(triangles; scale=1)
""" """
Reference: Reference:
@@ -113,6 +76,34 @@ function get_mass_properties(triangles; scale=1)
return Properties(volume, center_of_gravity, inertia) return Properties(volume, center_of_gravity, inertia)
end end
export get_mass_properties, get_volume function fast_volume(triangles; scale=1)
"""
Faster algorithm to get volume of mesh. Is just `get_mass_properties` without any calculations not relevant to volume.
Reference:
https://github.com/WoLpH/numpy-stl/blob/42b6c67324e13b8712af6730f77e5e9544ef63b0/stl/base.py#L362
https://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf
"""
x = reduce(hcat, [[v[1] .* scale for v in tri] for tri in triangles])'
y = reduce(hcat, [[v[2] .* scale for v in tri] for tri in triangles])'
z = reduce(hcat, [[v[3] .* scale for v in tri] for tri in triangles])'
w0, w1, w2 = x[:, 1], x[:, 2], x[:, 3]
temp0 = w0 + w1
f1 = temp0 + w2
x0, x1, x2 = x[:, 1], x[:, 2], x[:, 3]
y0, y1, y2 = y[:, 1], y[:, 2], y[:, 3]
z0, z1, z2 = z[:, 1], z[:, 2], z[:, 3]
a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0
a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0
d0, d1, d2 = b1 .* c2 .- b2 .* c1, a2 .* c1 .- a1 .* c2, a1 .* b2 .- a2 .* b1
volume = sum(d0 .* f1) / 6
return volume
end
export get_mass_properties, fast_volume
end # module end # module

View File

@@ -7,6 +7,44 @@ using MeshIO
using LinearAlgebra using LinearAlgebra
function _check_volume(triangles; scale=1)
"""
Slow algorithm just used to test the other algorithms
Reference:
https://people.eecs.berkeley.edu/~wkahan/VtetLang.pdf
"""
volume = 0.0
for tri in triangles
a, b, c = tri .* scale
W = sqrt(sum((a .- b) .^ 2))
V = sqrt(sum((b .- c) .^ 2))
U = sqrt(sum((c .- a) .^ 2))
v = sqrt(sum(a .^ 2))
u = sqrt(sum(b .^ 2))
w = sqrt(sum(c .^ 2))
X = (w - U + v) * (U + v + w)
Y = (u - V + w) * (V + w + u)
Z = (v - W + u) * (W + u + v)
x = (U - v + w) * (v - w + U)
y = (V - w + u) * (w - u + V)
z = (W - u + v) * (u - v + W)
ξ = sqrt(x * Y * Z)
η = sqrt(y * Z * X)
ζ = sqrt(z * X * Y)
λ = sqrt(x * y * z)
volume += sqrt((ξ + η + ζ - λ) * (λ + ξ + η - ζ) * (η + ζ + λ - ξ) * (ζ + λ + ξ - η)) / (192 * u * v * w)
end
return volume
end
@testset "simple cube stl" begin @testset "simple cube stl" begin
""" """
inertia math: inertia math:
@@ -25,14 +63,14 @@ using LinearAlgebra
@test all(eigvals(props.inertia) .≈ (5.0 + 1 / 3)) @test all(eigvals(props.inertia) .≈ (5.0 + 1 / 3))
@testset "get_volume function" begin @testset "get_volume function" begin
@test get_volume(stl; scale=1) props.volume rtol = 0.01 @test _check_volume(stl; scale=1) props.volume rtol = 0.01
@test get_volume(stl; scale=4) (4 * 2)^3 rtol = 0.01 @test _check_volume(stl; scale=4) (4 * 2)^3 rtol = 0.01
end end
end end
@testset "Compare volumes with scaling" begin @testset "Compare volumes with scaling" begin
for scale in 1:5 for scale in 1:5
props = get_mass_properties(stl; scale=scale) props = get_mass_properties(stl; scale=scale)
volume = get_volume(stl; scale=scale) volume = _check_volume(stl; scale=scale)
@test props.volume volume rtol = 0.01 @test props.volume volume rtol = 0.01
end end